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ABSTRACT

Container technology has gained ground in the industry for its
scalability and lightweight virtualization, especially in cloud envi-
ronments. Nevertheless, research has shown that containerized ap-
plications are an appealing target for cyberattacks, which may lead
to interruption of business-critical services and financial damage.
State-of-the-art anomaly-based host intrusion detection systems
(HIDS) may enhance container runtime security. However, they
were not designed to deal with the characteristics of containerized
environments. Specifically, they cannot effectively cope with the
scalability of containers and the diversity of anomalies.

To address these challenges, we introduce a novel anomaly-based
HIDS that relies on monitoring heterogeneous properties of system
calls. Our key idea is that anomalies can be accurately detected
when those properties are examined jointly within their context. To
this end, we model system calls leveraging a graph-based structure
that emphasizes their dependencies within their relative context,
allowing us to precisely discern between normal and malicious
activities. We evaluate our approach on two datasets of 20 different
attack scenarios containing 11,700 normal and 1,980 attack system
call traces. The achieved results show that our solution effectively
detects various anomalies with reasonable runtime overhead, out-
performing state-of-the-art tools.
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1 INTRODUCTION

Container technology has become an effective means of enhanc-
ing productivity in IT development processes, especially in cloud
environments. To leverage the scalability, portability, and ease of
deployment offered by orchestration tools such as Kubernetes [8],
many enterprises have moved their workloads to cloud-based con-
tainerized environments (e.g., Google GKE). Indeed, consistent with
a recent survey conducted by the Cloud Native Computing Founda-
tion (CNCF) [14], 92% of respondents declare they use containers
in production, a significant increase over their first survey in 2016
when only 23% of respondents used containers. Despite their ubig-
uity, containers have some flaws. When asked to cite their major
hurdles with containers, 32% of respondents selected security as a
top concern, implying that containers can widen an enterprise’s
threat landscape and expose its mission-critical workloads to sig-
nificant risks [4].

Container security is commonly viewed as image scanning and
vulnerability management [3]. While these are key practices in se-
curing the CI/CD build pipeline, they fail to handle security threats
that, per se, only arise at runtime, such as exploitation of zero-day
vulnerabilities and internal privilege escalation attacks. Such risks
mandate adopting an intrusion detection system (IDS) that moni-
tors containers for previously unknown threats and alerts DevOps
and security teams to investigate and mitigate incidents.

Generally, IDS solutions come in two flavors: signature-based [37]
and anomaly-based [32]. The signature-based approach compares a
process behavior against a list of predefined attack signatures. On
the other hand, the anomaly-based method establishes a "normal"
baseline to evaluate behavioral deviations. While signature-based
solutions detect known attacks with high accuracy, the contin-
ual emergence of previously unknown threats compromises their
effectiveness, rendering anomaly-based solutions more favorable.
Moreover, an IDS can either be deployed as a host-based (HIDS) [40]
or a network-based solution (NIDS) [54]. A HIDS detects host at-
tacks by monitoring metrics such as resource usage, system calls, or
event logs. On the other hand, a NIDS detects threats at the network
level by inspecting traffic flows. Unfortunately, NIDSes struggle to
cope with the encryption of network traffic [47] and cannot catch
advanced kernel attacks [40, 42], effectively undermining their use
in containerized environments. This motivates our work to opt for
a host-based approach to detect container anomalies.

HIDSes can rely on multiple host metrics and observation points
to distinguish between normal and abnormal activities. Of par-
ticular importance are system calls. A system call (syscall) is a
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request to the operating system (OS) kernel to provide a service
to a userspace program [22]. That is, syscalls are the rawest form
of communication between a process and the OS kernel, allowing
for fine-grained observables from which to infer solid discrimina-
tors for anomalies. Furthermore, most container attacks rely on
kernel features to perform privileged tasks [11], leaving discernible
relics in their generated syscall patterns. Besides, syscalls can be
collected in real-time with minimal overhead compared to other
host metrics [16]. In short, all these traits make syscalls a sound
data source for detecting container anomalies.

The idea of leveraging syscalls to detect anomalies has already
been applied to traditional environments and applications [38].
Some solutions are enumeration-based, such as the sequence time
delay embedding (STIDE) [21], representing a process behavior
as n-gram syscall sequences and employing a mismatch-based
threshold to detect anomalies. Several other works are frequency-
based, such as the bag of syscalls (BoSC)[33], which models the
frequency of syscalls in short sequences. Probabilistic models, in-
cluding Hidden Markov models (HMM)[28, 29] and Finite-State
Machines (FSM) [65], have also been leveraged to classify syscall pat-
terns, counting on their sequence recognition skills. Other methods
rely on syscall arguments and return values to identify anomalous
behavior. Remarkably, few works have been proposed to deal with
container anomalies. These solutions model container behavior
either by 1) combining the STIDE and the BoSC techniques [2] or 2)
measuring the frequency of syscalls within short time intervals [39].
While these host and container-based approaches may improve the
runtime security for containers, they lack the capabilities to ef-
fectively cope with the properties of containerized environments,
specifically with the high scalability of containers and the diversity
of container attacks.

High scalability. VM-based and monolithic infrastructures are
less dense with fewer workloads to secure [30], compared to con-
tainerized environments, which by design, support the scaling of
containers (i.e., replicas) on a single host in response to applications’
resource usage. According to a recent study [10], there has been
an increase in the container-per-host density. The median number
of containers running per host reached 30 in 2019, up from 15 in
2018. To put this number into perspective, 30 containers running
simultaneously on a single host can result in syscall batches 30
times larger than in traditional environments. This renders HIDSes
designed for monolithic and VM-based infrastructures inefficient
at handling multiple syscall streams simultaneously. For example,
despite their robust modeling of syscalls, HMM-based approaches
require large amounts of storage and high computational resources
for long syscall traces [2, 63], making their use impractical within
containerized environments. The same holds for solutions based
on enumeration. Rolling a short window over voluminous traces
to identify mismatched sequences is time-consuming, imposing
processing delays and desynchronizing real-time activities. Such
constraints entail a monitoring scheme that efficiently models con-
tainer behavior while being computationally lightweight. Our work
represents syscalls in an abstract way that simplifies their process-
ing without losing their fundamental semantics.

Diverse attacks. There are two primary vectors by which container
attacks can occur. The first vector relates to applications running
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within containers. For instance, an external attacker can exploit a
vulnerability in a public-facing containerized application to bypass
an authentication mechanism (e.g., brute force attack), disclose
sensitive information (e.g., directory traversal attack), or remotely
execute malicious code (e.g., command injection attack). Some of
these attacks can also provide an avenue for an external attacker to
gain a foothold on a container and further elevate privileges on its
underlying host. The second vector relates to kernel vulnerabilities
(e.g., Dirty Cow [64]) and container misconfigurations (e.g., exposed
docker socket). Unfortunately, the OS’s isolation techniques such as
namespaces [52] and capabilities [27] cannot prevent an adversary
inside a container from exploiting kernel vulnerabilities or excessive
capabilities to escape its environment. In short, adversaries can
attack containers from multiple angles with different techniques,
thus yielding various patterns of syscall anomalies. Unfortunately,
existing HIDSes cannot generically capture those diverse anomalies.
For example, techniques based on the order of syscalls are limited to
merely detecting attacks that break the execution flow. Hence, any
stealthy exploit that leverages syscall arguments without violating
their ordering would pass undetected. On the other hand, solutions
that rely solely on syscall arguments cannot detect attacks that
manifest in high syscall frequency. This suggests that a generic
detection of container attacks requires the analysis of multiple
aspects of syscalls. Therefore, we base our detection scheme on
consolidating different syscall properties.

To account for these challenges, we introduce an unsupervised
anomaly-based HIDS that raises alarms when a container behaves
abnormally. Our key observation is that anomalies manifest in vari-
ous patterns, requiring the monitoring of multiple syscall properties.
Further, to fully leverage such properties and distinguish anomalies
from normal behavior, our key insight is to analyze the executed
syscalls within their context, defined by their preceding and suc-
ceeding syscalls. Upon this, we develop an automated host-based
anomaly detection system that learns the “normal” behavior of each
container individually and flags behavioral deviations in produc-
tion. We evaluate our approach on 11,700 normal and 1980 attack
syscall traces of 20 different attack scenarios, and we demonstrate
that our system is effective and detects 19 out of 20 attacks with a
low false-positive rate and an acceptable runtime overhead.

In summary, we make the following contributions:

e We collect and release a dataset of container syscalls exe-
cuted during different attack scenarios. To the best of our
knowledge, this is the first labeled dataset containing con-
tainer breakout attacks.

e We perform an empirical analysis of different attack sce-
narios and identify the main discriminators for container
anomalies, as well as the limitations of existing approaches.

e We introduce an anomaly-based approach for detecting con-
tainer anomalies by analyzing different syscall properties
within their context.

e We implement our approach and we show that our solution
detects 19 out of 20 attacks with an average precision of
99.29%, significantly outperforming existing approaches.

In the spirit of open science, we make both our tool and the CB-
DS dataset available at https://github.com/Asbatel/ContainerHIDS.
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Dataset | Threat Impact | CVE/CWE/MISCONF | Vulnerability/Misconfiguration CVSS | Application Version
Authentication | CWE-307 Brute Force Login 9.8 OpenSSL 1.0.1
Bypass CVE-2012-2122 MySQL Authentication Bypass 7.5 Oracle MySQL 5.1.62
CVE-2014-0050 Heartbleed 5.0 OpenSSL 1.0.1
Information CVE-2017-7529 Nginx Integer Overflow 7.5 Nginx 0.5.6
LID-DS Disclosure CVE-2018-3760 Sprocket Information Leak 7.5 Sprockets 3.7.1
(AV: 1) CVE-2019-5418 Rails File Content Disclosure 7.5 Rubygem 5.2.2
CWE-89 SQL Injection 7.5 DVWA -
Arbitrary Code | CWE-434-PHP Unrestricted File Upload - (PHP) 7.5 DVWA -
Execution CWE-434-EPS Unrestricted File Upload - (EPS) 7.5 Converter (EPS to SVG) -
CVE-2019-0191 Zipslip 6.5 Apache Karaf 4.2.2
CVE-2016-9962 (ent: Shellshock) File-descriptor Insecure Access 6.4 E-shop + Bash 4.2.2
MISCONF (ent: Shellshock) Docker Socket Abuse - E-shop + Bash 422
CB-DS Container CVE-2019-5736 runC Overwrite 9.8 E-shop + Docker Engine | 18.06.1
(AV: 2) Breakout CVE-2022-0847 Dirty Pipe 7.8 | E-shop -
CVE-2022-0492 RELEASE_AGENT Abuse 7.0 E-shop -
MISCONF SYS_MODULE Abuse - E-shop -
MISCONF SYS_ADMIN Abuse - E-shop -
MISCONF MKNOD Abuse - E-shop -
MISCONF Host Network Sniffing - E-shop -
MISCONF UEVENT_HELPER Abuse - E-shop -

Table 1: Overview of the attack scenarios included in the LID-DS and CB-DS datasets. (AV) stands for Attack Vector. We selected

four scenarios [ ] to conduct our preliminary analysis.

2 PRELIMINARY ASSESSMENT

To determine how the behavior of a container under attack com-
pares to a container in a normal state, we conducted a preliminary
study on a small dataset. Specifically, we examined heterogeneous
properties of syscalls and explored how they can translate into
decision features to capture anomalies generically.

2.1 Dataset

We use two datasets of container syscall traces representing various
routes to attacking containers. While the first dataset comes from
a recent work [24], we collected the second dataset to represent
container breakout attacks, which are not present in any publicly
available dataset. As shown in Table 1, each dataset expresses an at-
tack vector and comprises ten different attack scenarios, categorized
by their impacts. Further, to conduct our preliminary assessments,
we selected the severest attack scenario (i.e., highest CVSS) from
each threat impact category to avoid bias in the final evaluation.

LID-DS. The Leipzig Intrusion Detection DataSet (LID-DS) [24] is a
HIDS dataset consisting of container syscall traces of 10 different at-
tack scenarios. The authors of LID-DS generated syscall traces using
automated interactions on eight various containerized applications.
Specifically, they submitted non-malicious inputs and performed
random walks to simulate regular interactions, whereas, in the
attack mode, they leveraged malicious payloads and penetration
tools (e.g., Metasploit) to exploit vulnerabilities in the containerized
applications. The authors of LID-DS used Sysdig [58] to collect
syscalls. Therefore, the resulting traces contain rich metadata such
as timestamps, process names, syscalls, and arguments. For each at-
tack scenario, LID-DS has 1,000 normal and 99 attack syscall traces.
Each trace represents the behavior of a container for 30 seconds.
In total, LID-DS has approximately 10,000 normal traces and 990
attack traces, worth roughly four days of recording.

CB-DS. Since LID-DS lacks container breakout scenarios, we col-
lected the Container Breakout Dataset (CB-DS). Typically, a con-
tainer breakout attack occurs when an attacker with access to a
container exploits a kernel vulnerability or leverages extra capabil-
ities to escape the container environment and elevate privileges on
the underlying host. To collect CB-DS, we generated syscall traces
via automated interactions on a containerized online-shopping ap-
plication (E-shop). In detail, we performed random walks, payment
checkout funnels, and admin debugging tasks (e.g., accessing a
container via SSH and checking Apache logs) to simulate container
normal behavior. For attacks, we replicated 10 common container
breakout attacks [26, 41]. In the first two attacks, an external at-
tacker exploits a Shellshock [55] vulnerability in the E-shop applica-
tion to access the container. Next, they leverage the mounted and
exposed docker socket (i.e., /var/run/docker.sock) to spin up a
new container with either 1) a mounted volume pointing to the
host root filesystem or 2) a host PID (i.e., -pid=host) to enter the
host namespace using nsenter. The remaining attacks involve a
local attacker with root access to containers (i.e., member of the
docker group [15]). The attacker leverages an over-permissive con-
tainer (i.e., running with the —privileged or —cap-add=all flag)
to escape its isolation using eight different techniques, such as ex-
ploiting the sys_module capability to load a reverse shell module
into the OS kernel, executing a malicious payload to overwrite the
runC binary [50], and leveraging the Dirty Pipe [35] vulnerability to
read the /etc/shadow file. Similar to LID-DS, our normal scenario
consists of 1,700 syscall traces, whereas each of our ten attacks has
99 syscall traces, worth ~23 hours of recording in total.

2.2 Feature Exploration

Most anomaly-based HIDSes rely on a single behavioral attribute
to establish their “normal” baseline. As a result, they are limited
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Table 2: Preliminary results. The percentage of traces that com-
prise suspicious syscall observables under normal and attack set-
tings. (-) denotes that no trace contains the suspicious observable.

Suspicious Syscall Observables
Unseen Syscall Unseen Args High Frequency
Scenario Normal | Exploit | Normal | Exploit | Normal | Exploit
CWE-307 0.03% - 27.75% 21.42% 0.21% 86.73%
CVE-2017-7529 - 97.72% - - 0.22% -
CWE-434-PHP 0.78% 98.27% 15.14% 98.27% - 0.09%
CVE-2019-5736 0.52% 99.22% - 99.18% 0.43% -

to specific classes of anomalies and cannot perform effectively on
a generalized basis, implying that no single attribute can tackle
the full spectrum of abnormal behavior. In this work, we propose
an approach to detect various anomalies generically. This requires
studying prints commonly emitted by different abnormalities. To
this end, we first select suspicious syscall-based observables that
might discern between normal and abnormal behavior, namely pre-
viously unseen syscalls, previously unseen arguments, and high
syscalls frequency. We rest this selection on three assumptions: 1) an
unseen syscall can indicate that a container has requested unusual
kernel service, 2) an unseen argument can reveal that a container
has opened a suspicious file, has written to an unexpected directory,
or has executed an unusual program, and 3) a high frequency of
syscalls can imply that a container has excessively requested many
kernel services within a limited time interval. Using our prelimi-
nary dataset, we study how a container under attack deviates from
its norm with respect to our selected suspicious observables. For
each scenario, we calculate the percentage of traces that comprise
suspicions under both normal and attack modes. We conduct 4-fold
cross-validation using a 25:75 train-test split of normal traces and
99 attack traces as test data. We choose 75% of our normal data as
a test set to gain accurate insights into unseen data. In the training
phase, we collect three elements: 1) Seen syscalls — syscalls ob-
served in training traces. 2) Seen arguments - here we restrict our
attention to only filesystem-related arguments (i.e., file paths) that
are usually generated when processes are cloned (clone syscall) or
when files are accessed (open or stat syscalls) or executed (execve
syscall) [36]. Moreover, to avoid sensitivity towards application-
specific file names (e.g., random cache strings, user uploaded files),
we exclude file names for long paths containing more than three
subdirectories (e.g., /var/www/html/e-shop/asset/avatar.png).
However, we maintain the full length of short paths given that sensi-
tive files generally reside in a few subdirectories from the top-level
root directory, such as configuration files in /etc and command
binaries in /usr/bin. The third element is 3) the maximum trace
length within training traces - the highest number of syscalls that a
normal trace contains. In testing, we consider a syscall or argument
unseen if it does not exist in the training lists, and the frequency of
syscalls is high if the trace length exceeds the maximum training
length.

2.3 Feature Engineering

From the standpoint of traditional syscall-based HIDSes, it should
be feasible to detect attacks by simply flagging unseen syscalls, un-
seen arguments, or overstated numbers of syscalls. This perspective
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stands on two hypotheses: 1) that it is unlikely for a regular oper-
ation to invoke an excessive number of syscalls or request kernel
services that the process never meant to request, and 2) that attacks
usually make use of unusual syscalls and arguments to abnormally
access system resources (e.g., memory, filesystem) or conceivably
invoke excessive amount of syscalls to crack credentials or encryp-
tion keys. While these points may be theoretically plausible, in
reality, they do not comprehensively hold. As shown in Table 2, the
regular operations of containers can also trigger suspicious syscall
observables. For example, the CWE-307 scenario has few normal
traces with unseen syscalls, while no attack traces have so. Under
the same scenario, unseen arguments are triggered more often dur-
ing the normal execution of containers than during the attack phase.
Generally, we can attribute these observations to two possible rea-
sons: 1) that the behavior of users is usually non-repetitive and,
thus, can unintentionally generate unseen syscalls or/and unseen
arguments, and 2) that the frequent updates to upstream base OS im-
ages (e.g., alpine:latest) used in building containerized applications
may trigger different execution paths that have never been exerted
in training, thus potentially invoking unusual syscalls or arguments.
Another observation is related to the frequency increase of syscalls.
Our preliminary assessment shows that sometimes, containers can
invoke more syscalls in normal mode than in attack mode. For
example, in both CVE-2017-7529 and CVE-2019-5736 scenarios, we
see a syscall frequency increase more often in normal traces than
in attack traces. A plausible reason for this can be traffic-related.
Specifically, the number of users visiting an application may differ
from the training settings, resulting in an augmented number of
syscalls during specific periods. Armed with these observations, we
argue that "it is infeasible to set up a correct training environment that
can accurately cover the comprehensive spectrum of container "nor-
mal" behavior." Therefore, the fundamental challenge is to control
the trade-off between sensitivity (i.e., a regular activity has acci-
dentally triggered a suspicious syscall observable) and specificity
(i.e., a real anomaly has generated a suspicious syscall observable).
Having already selected suspicious observables that distinguish be-
tween normal and anomalous behavior to some extent, we choose
to refine those observables based on two key insights to address the
challenge above. Our first insight is that in addition to systemati-
cally tracking unseen syscalls and unseen arguments within a time
interval, we need to analyze the dependencies of such observables
within their surrounding context. We define a context as the n most
recent syscalls that occur close in time to a suspicious observable.
Also, we define a dependency as the link between two consecutive
syscalls that intrinsically relate to each other from a semantic per-
spective — e.g., binding a socket to an address (bind) depends on
the socket creation (socket). The second insight is to establish a
loose upper limit on the syscall frequency to understand the ratio-
nale for the increase. Our intuition here is that frequency-based
attacks usually produce at least a quintupled number of syscalls
compared to the standard. Our evaluation results demonstrate that
incorporating both the context around syscalls and a flexible ceiling
on their frequency helps us differentiate normal from abnormal
behavior properly. While our preliminary assessment uses only
four scenarios from our datasets, our results in Section 5 show that
the features are also generalizable to other scenarios.
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Figure 1: System Overview. (A) We split the continuous flow of syscalls into sequential captures (scaps), defined as syscall sequences. (B) We convert each
sequence (S;) into a syscall sequence graph (SSG;), from which we construct our anomaly vector. Next, we feed the vector into an unsupervised auto-encoder
neural network for either (C) training to minimize the training errors or (D) classifying the sequence using the trained model and a selected threshold.

Unseen syscalls influence. We evaluate the abnormality of un-
seen syscalls by analyzing their contextual influence. This influence
is measured based on the number of dependencies to other syscalls
occurring relatively close in time. Our view is that unseen syscalls
with multiple dependencies within a time interval are likely to play
a key role in determining a container activity, thereby considerably
altering its behavior. Conversely, unseen syscalls with few depen-
dencies are less likely to influence the operations performed by a
container in a specific period, thus minimally varying its behavior.

Unseen arguments influence. Similar to unseen syscalls, we
measure the contextual influence of syscalls with unseen arguments
by analyzing their dependencies within their context.

Fold frequency increase. According to our preliminary analy-
sis, exceeding the frequency baseline is a sensitive indicator of
anomalies. Accordingly, we adopt the fold-increase technique to
reasonably determine the frequency’s rise intent. We define the
fold increase as the increased ratio to the frequency baseline set
during training.

3 THREAT MODEL

We consider a container monitoring tool with complete visibility
into all communications between the host OS kernel and the run-
ning containers. We assume that the monitoring agent is installed
on the host and monitors each container separately (i.e., syscalls
are filtered based on container ID or name) — monitoring the or-
chestrator control plane (e.g., kube-apiserver) is out of scope for
our work. We consider two types of attackers: 1) an external at-
tacker with access to a public-facing containerized application and
2) an internal attacker with root privileges inside a container. Exter-
nal attackers can exploit vulnerabilities at the application level to
possibly read sensitive data, exhaust system resources, or obtain a
remote shell into a container, while internal attackers can leverage
kernel vulnerabilities or extra capabilities to elevate privileges on
the underlying host system.

While, in principle, attackers with elevated privileges could in-
terfere with our monitoring system, since Sysdig runs with root
privileges on the host, our approach can raise alarms for privilege
escalations before an attacker can tamper with Sysdig itself, as we

show in Section 5. In fact, compromising the kernel requires the
execution of (anomalous) syscalls, which are analyzed according
to their context and classified by our system in real time. In addi-
tion, we envision a setup in which such captured malicious syscalls
are immediately forwarded to an external component (e.g., sepa-
rate physical machine/co-processor, cloud backend) for analysis,
providing additional isolation.

4 APPROACH

We aim to detect anomalies efficiently, with few false alarms and
reasonable computational overhead. We build our solution on the
premise that anomalies can be accurately identified when multiple
syscall properties are examined jointly within their context. As
shown in Figure 1, we first break the continuous flow of syscalls
into short intervals, defined as syscall sequences, each representing
a time point in container activity. Next, we convert each sequence
into a graph representation, allowing us to contextualize syscalls
and extract a feature set, defined as anomaly vector, illustrating the
extent to which a syscall sequence is abnormal. Last, we feed the
generated anomaly vector into an auto-encoder neural network to
perform training or detection. In training, our network learns to
minimize the training errors, while in detection, we classify syscall
sequences using the trained model and a selected threshold. In
short, our approach consists of three phases: syscalls chunking,
syscalls encoding, and model training or anomaly detection.

4.1 Syscalls Chunking

We use Sysdig as a tracing tool to collect syscalls. Sysdig oper-
ates at both the kernel and the userspace. At its core, it uses a
kernel module (i.e., sysdig-probe) to intercept and push syscalls to
userspace, where parsing and decoding occur (e.g., resolving file
descriptors numbers into human-readable data [19]). The first step
of our approach is to break the continuous capture of syscalls into
multiple scap files. Each file is a syscall sequence representing the
container’s behavior for a timespan 7. We leverage Sysdig’s file
rotation technique to perform the capture split. Specifically, we
create a policy that defines the duration 7 of each generated scap
file and their retention period before being overwritten to restrict
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Figure 2: Overview of the creation of a syscall sequence graph (S§5G)
from a syscall sequence. The SSG nodes represent distinct syscalls in a
sequence, directed edges represent moves from syscalls to their respective
successors, and weights represent the number of times ordered pairs of
syscalls occurred in a sequence. The USN represents unseen syscalls while
the UAN represents syscalls (stat, open, execve, clone) with unseen
arguments.

the disk space. Our selection of the timespan 7 rests on two moti-
vations: 1) 49% of containers live less than five minutes [59], which
requires monitoring at short intervals, and 2) monitoring extremely
short intervals (e.g., 50 milliseconds) is insufficient to characterize
container behavior and properly contextualize syscalls. Thus, we
experimentally define the sequence duration 7 as one second (1s).

4.2 Syscalls Encoding

Given our preliminary assessment results, the encoding of syscalls
should consider the frequency increase and the influence unseen
syscalls and unseen arguments exert within a sequence. To this
end, we leverage a graph structure to model syscalls. We rest this
selection on the perspective that a graph representation of syscalls
provides a rich data structure from which to extract solid behavioral
features as efficiently as possible. It is noteworthy that organizing
syscalls in a graph has already been explored in malware detection
and classification and has shown good detection capabilities and
robustness against malware obfuscation techniques [44, 57].

4.2.1 Syscall Sequence Graph (SSG). We convert each syscall se-
quence to a weighted directed graph, referred to as syscall sequence
graph SSG = (N, E, W). In our setting, N is the set of nodes, each
representing a distinct syscall in a sequence — here, we define one
single node to represent all unseen syscalls in a sequence, which
we refer to as the unseen syscall node (USN). In a similar manner,
we define the unseen argument node (UAN) to account for syscalls
(open, stat, execve, clone) with unseen arguments. This repre-
sentation enables us to reduce the number of nodes in the SSG for
lightweight graph processing. To illustrate, as Linux has roughly
380 syscalls, a SSG graph can have only a maximum of 381 nodes,
and this would happen only when a sequence has 1) a syscall or
syscalls with unseen arguments, making the UAN node, and 2) all
Linux syscalls (previously seen), representing the other 380 nodes.
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Next, E is the set of directed edges, each representing a move from a
syscall sc; to the succeeding syscall scj1. W represents the weights
of edges i.e., how frequently an ordered pair of syscalls appeared
in a sequence. Figure 2 demonstrates the construction process of
the SSG from a syscall sequence.

4.2.2 SSG Properties. We construct our feature set by leveraging
two properties of the SSG graph, namely the degree centrality [7]
and the graph size [46].

Degree centrality. In graph theory, the centrality metric captures
the topological importance of nodes based on different metrics,
namely degree, betweenness, and closeness [6]. Aiming to assess
the influence of unseen syscalls and unseen arguments within their
context, we use the degree centrality to evaluate the dependen-
cies of the unseen syscall node (USN) and the unseen argument
node (UAN) within their respective SSG. Further, since the SSG
is a directed graph, we express the degree centrality using two
sub-metrics: in-degree and out-degree, each reflecting a different
interpretation of "influence". The in-degree centrality (IDC) reflects
the prominence of a node by counting its incoming links, whereas
the out-degree centrality (ODC) measures its impact by counting
its successors [48].

SSG size. In our setting, each edge in the SSG corresponds to a de-
pendency between two adjacent syscalls. Additionally, every edge
is assigned a weight representing how frequently a particular de-
pendency occurs. Thus, an abnormal syscall sequence that involves
an overstated number of syscalls can be reflected in the number of
dependencies within its corresponding SSG. With this detail, we
represent the frequency of syscalls using the SSG size, which is
simply the sum of all its edges’ weights.

4.2.3 Unseen Syscall Influence (USI). As shown in Equation 1, we
calculate the in-degree centrality of the USN node by dividing
the number of its incoming edges by N — 1, while we calculate
its out-degree centrality by dividing the number of its outgoing
edges by N — 1, where N is the number of nodes in the SSG graph.
Generally, the in-degree and out-degree centralities are similar, and
can only differ for sequences beginning or ending with an unseen
syscall. Hence, we obtain the USN centrality by summing both
metrics. Additionally, since we aggregate all unseen syscalls under
the USN, we calculate the USI by multiplying the USN centrality
by Dys, the number of distinct unseen syscalls grouped under the
USN. We speculate that distinct unseen syscalls point to the request
of various unusual kernel services. Therefore, the product of the
USN centrality with Dy can properly judge the maliciousness of
a sequence.

degin(USN degout (USN
IDCysn = —eg]l\’]’(_ - ) ODCyn = —69";{ - )
USI = Dys X (IDCysn + ODCusn) )

4.2.4 Unseen Argument Influence (UAI). Similar to the USI, we
calculate the UAI by considering the degree centrality of the UAN
node. As shown in Equation 3, we multiply the degree centrality
of the UAN by two factors: 1) the number of distinct unseen argu-
ments aggregated under the UAN, and 2) the number of distinct
syscalls (open, stat, execve, clone) used to pass unseen argu-
ments. Our view is that distinct unseen arguments Dy, can point
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to different unusual file paths, while distinct syscalls with unseen
arguments D can refer to different kernel functions using those file
paths. Thus, the combination of both factors with the UAN degree
centrality can precisely interpret the suspiciousness of a sequence.

UAI = Dyq X Ds X (IDCygn + ODCuan) 3)

4.2.5 Frequency Increase. (FI). We leverage the SSG size property
to capture the frequency of syscalls. We obtain the SSGg;ze of a
sequence by summing all its edges’ weights. Next, we use the fold
increase technique to assess the nature of the frequency rise. As
shown in Equation 4, we calculate the FI as the ratio of the SSGgize
to the product of the max training SSGs’ size and a configurable
constant f, which we define experimentally as 5.

— S$5Ggize
axp

4.2.6 Anomaly Vector. We represent each sequence by an anomaly
vector (AV). This vector consolidates the extracted features (USI,
UAI and FI) to jointly articulate the extent to which a syscall
sequence deviates from the normal baseline. It is important to note
that the extracted anomaly vector (AV) is vastly smaller than the
original syscall sequence, leading to a short sequence execution
time, as we demonstrate in Section 5.

FI , a=max {SSG[Vsizel s 55Gtrgize, } &

4.3 Model Training

To build our models, we leverage the auto-encoder neural network.
The latter is an unsupervised deep learning algorithm [62], con-
sisting of 1) the encoder to convert the input to low-dimensional
representation and 2) the decoder to reconstruct the original in-
put from its compressed representation. In training, we feed the
auto-encoder with "normal" anomaly vectors to minimize the re-
construction error. In testing, if the trained model comes across
"abnormal" vectors that vary from the training vectors, the model
reproduces those vectors with a significant reconstruction error.
Therefore, our approach uses the reconstruction error as a threshold
to detect anomalies.

4.4 Anomaly Detection

To determine a reasonable threshold for detecting anomalies, we
first test the training data against our trained model to collect
the training reconstruction errors. Next, we adopt a customized
function to select an optimal detection threshold. As shown in
Equation 5, we select the threshold based on the product of 1) the
max of the training reconstruction errors and 2) a constant y. We
evaluate y at multiple values ranging from 0.2 to 2 with a 0.2 step.
In this range of values, we also assess thresholds that closely sit
outside our training reconstruction errors list. In general, the choice
of y emphasizes the trade-off between detection and false positive
rates.

Dihresh =Y X max {REm, = REtrn} (5)

5 EVALUATION

In this section, we present our experimental evaluation. We evaluate
our approach on both the LID-DS and CB-DS datasets.
Autoencoder neural network setup. Our auto-encoder consists
of four layers with the Sigmoid activation function. We implement
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Table 3: Parameter Selection. The first row [ ] highlights the
default values for the parameters and the next rows [] show the
optimal values found for each parameter.

B T Avg. AUC% | Avg. sequence execution time (s)
1.5 100ms 84.73 0.71
10 100ms 97.72 0.71
5 100ms 97.98 0.71
5 2s 99.22 0.88
5 1s 99.22 0,84

the network using Keras [13] with Tensorflow [1] as a back-end. We
set two neurons in the first and fourth hidden layers and one in the
bottleneck layers. Each input trains the model for 120 epochs. We
utilize the Adam optimizer with 0.001 as a learning rate to minimize
the reconstruction error. After training the network, we evaluate
the reconstruction errors generated by the training data to select a
proper detection threshold.

5.1 Parameter Selection

As described in Section 4, our solution requires two configurable
parameters to monitor container behavior and detect anomalies:

e f controls sensitivity to syscalls frequency.
o 7 specifies the duration of the sequence.

Optimization metric. We empirically select each parameter by
optimizing the Area Under the Curve (AUC) [45] and the sequence
execution time. The AUC metric assists in measuring the capability
of our parameters in differentiating between normal and abnormal
container behavior at different threshold levels, while the sequence
execution time assesses the time spent by our approach to encode
and classify a syscall sequence.

Parameter selection. We test each parameter individually using
the following values:

e f:1.5,3,5,7 and 10.
e 7:100ms, 200ms, 500ms, 1s and 2s.

The fold-frequency increase f ranges from 1.5 to 10, with smaller
values sensitive to minor frequency increases in normal syscall
sequences, while larger values might overlook slight frequency
increases within anomalous sequences. For the sequence duration
7, its values range from 100ms to 2s, where shorter periods may
contain no syscalls and, thus, lead to poor container behavior char-
acterization. In contrast, extended periods may cause processing
delays due to the number of executed syscalls. We iterate over each
parameter’s possible values while maintaining the rest of them
at their default values. When an optimal value is found for a pa-
rameter, that value becomes the new default for optimizing other
parameters. We conduct a 4-fold cross-validation analysis for each
setting on our preliminary dataset. Although the optimal parame-
ters may be biased toward our preliminary dataset, our evaluation
results demonstrate that the selected values are generalizable to
other scenarios.

As shown in Table 3, we find optimal values for =5 and 7 = 1s.
Nonetheless, DevOps and security teams can further tweak these
parameters according to their policies and setups in production.
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Figure 3: AUC scores among different attack scenarios.

Table 4: Performance of our approach compared to related works.

Our Approach CDL STIDE-BoSC
Scenario Precision | Recall | Fl-score | Accuracy | Precision | Recall | Fl-score | Accuracy | Precision | Recall | Fl-score | Accuracy
CWE-307 0.9942 0.9183 0.9547 0.9565 0.9898 0.9183 0.9527 0.9544 0.6975 0.9795 0.8148 0.7774
CVE-2012-2122 0.9983 0.7935 0.8842 0.8961 0.9748 0.6645 0.7902 0.8236 0.6195 0.9935 0.7631 0.6917
CVE-2017-7529 0.9946 0.9885 0.9915 0.9916 0.2447 0.0057 0.0112 0.4940 0.9850 0.9885 0.9867 0.9867
CVE-2018-3760 0.9960 0.9998 0.9979 0.9979 0.9717 0.8248 0.8922 0.9004 0.7116 0.9999 0.8315 0.9773
CVE-2019-5418 0.9986 0.9989 0.9987 0.9987 0.3642 0.0102 0.0198 0.4961 0.7497 0.9999 0.8569 0.8331
CW-89 0.9986 0.9987 0.9987 0.9987 0.9693 0.9999 0.9844 0.9841 0.5687 0.9999 0.7250 0.6208
CWE-434-PHP 0.9933 0.9987 0.9961 0.9961 0.9494 0.9902 0.9694 0.9687 0.5638 0.9999 0.7211 0.6133
CWE-434-EPS 0.9304 0.9988 0.9634 0.9620 0.9344 0.4848 0.6384 0.7254 0.6613 0.9999 0.7961 0.7440
CVE-2019-0191 0.9881 0.9987 0.9934 0.9934 0.7356 0.1224 0.2099 0.5392 0.5165 0.9999 0.6811 0.5320
CVE-2016-9962 0.9974 0.9962 0.9968 0.9968 0.7132 0.0201 0.0389 0.5059 0.5686 0.9999 0.7250 0.6207
M-Socket 0.9974 0.9937 0.9955 0.9956 0.8602 0.0495 0.0936 0.5207 0.5686 0.9999 0.7250 0.6207
CVE-2019-5736 0.9974 0.9912 0.9943 0.9943 0.7869 0.0297 0.0572 0.5108 0.5686 0.9999 0.7250 0.6207
CVE-2022-0492 0.9974 0.9912 0.9943 0.9943 0.0000 0.0000 0.0000 0.4959 0.5599 0.9651 0.7086 0.6032
CVE-2022-0847 0.9974 0.9887 0.9930 0.9931 0.9792 0.3802 0.5475 0.6859 0.5686 0.9999 0.7250 0.6207
M-SYS_MOD 0.9975 0.9987 0.9981 0.9981 0.9897 0.7802 0.8724 0.8859 0.5686 0.9999 0.7250 0.6207
M-SYS_ADMIN 0.9974 0.9962 0.9968 0.9968 0.8326 0.0401 0.0763 0.5159 0.5686 0.9999 0.7250 0.6207
M-MKNOD 0.9974 0.9937 0.9955 0.9956 0.5518 0.0101 0.0194 0.5009 0.5686 0.9999 0.7250 0.6207
M-NET 0.9974 0.9912 0.9943 0.9943 0.9878 0.6534 0.7865 0.8227 0.5637 0.9801 0.7157 0.6108
M-U_HELPER 0.9975 0.9987 0.9981 0.9981 0.5542 0.0103 0.0196 0.5009 0.5686 0.9999 0.7250 0.6207

5.2 Results Analysis

We evaluate our approach by running 4-fold cross-validation on
both LID-DS and CB-DS. Since the datasets comprise syscall traces
and not sequences, we consider a trace malicious if one of its se-
quences is malicious. Figure 3 illustrates the performance of our ap-
proach in terms of the AUC score. The plots show that our approach
produces average scores of 99.97%, 99.81%, and 99.72% for container
breakout, information disclosure, and arbitrary code execution cate-
gories, respectively. This illustrates the excellent trade-off between
detection and false-positive rates achieved across different attack
scenarios. However, our approach generates a slightly low AUC
of 96.40% for the authentication bypass category. To understand
the cause, we conduct a new evaluation of our approach at only
one threshold using precision, recall, F1-score, and accuracy. We
select the threshold based on the optimal y value, which we empiri-
cally define as y=1.4. According to Table 4, we achieve a recall of
79.35% and 91.83% in the CVE-2012-2122 and CWE-307 scenarios,
respectively. We attribute that to two causes: 1) our approach fails
to raise alarms in 11.07% of the attack syscall traces, showing that
attacks can sometimes succeed without emitting suspicious syscall
observables, as we discuss in further detail in Section 5.7, and 2)

detecting high-frequency attacks is always sensitive to the config-
urable upper limit f set during training. Specifically, very loose
can always overlook attacks exhibiting a slight syscall frequency
increase, while very tight f can flag minor frequency increases
manifested in normal behavior. Yet, we achieve high precision and
recall rates across the other 17 attack scenarios, suggesting that
our approach incorporates solid features capable of learning the
underlying patterns of container behavior and correctly classifying
its activities. Nonetheless, as we discuss in Section 7, our approach
shows some limitations concerning the Heartbleed scenario.

5.3 Comparison with Existing Approaches

We compare our approach with state-of-the-art anomaly-based
detection solutions, namely STIDE-BoSC [2] and CDL [39]. Unfor-
tunately, neither of these container-based approaches published
their code or raw datasets. Hence, to evaluate these approaches on
the LID-DS and CB-DS datasets, we faithfully reimplemented their
decision engine techniques.

CDL. In this work, the authors convert syscalls into time-based
sequences, each representing 100 milliseconds of syscalls. Further,
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Figure 4: Ablation Study. AUC scores of each individual feature of the anomaly vector among different attack scenarios.

they encode each sequence into a frequency vector, which is fur-
ther fed to an autoencoder neural network for either training or
detection. In training, the network learns to reduce the training
reconstruction errors. After sufficient training, the authors select
a detection threshold as the 99.99 percentile of the reconstruc-
tion errors to deploy their models. In our settings, we apply the
same sequence duration (i.e., 100ms) and percentile threshold (i.e.,
99.99) across the entire trace. We deem a trace malicious if one of
its sequences is classified as malicious. As shown in Table 4, the
CDL approach works well for attacks exhibiting a high number of
syscalls. However, it fails to detect attacks emitting different syscall
patterns, such as unseen arguments. Therefore, CDL achieves a
precision rate of 75.72% on average.

STIDE-BoSC. This work incorporates both the STIDE and BoSC
techniques. Specifically, the authors construct a bag of syscalls by
rolling a window of size ten across syscall traces and recording the
occurrence of every call within each window. This work operates in
two modes: training and detection. In training, the authors convert
training syscall traces into a list of BoSCs to construct a database
that represents containers’ normal behavior, while in testing, they
read syscalls in groups, defined as epochs. For each epoch, the
authors roll a window of size ten to construct BoSCs and verify
their presence in the normal database. A mismatch is declared if a
BoSC does not exist in the normal database. On a dataset collected
by authors, the STIDE-BoSC approach yields a detection rate of
100% and a false alarm rate of 2% using an epoch size of 1000 syscalls
and a threshold of 10 mismatches. In our setup, we apply the same
epoch size and mismatch threshold across the entire trace. We deem
a trace malicious if one of its epochs is classified as malicious. Table 4
shows that combining the STIDE and bag of syscalls achieves good
detection results but with a significant number of false positives.
This can be attributed to the occurrence of previously unseen BoSC
sequences also during normal activities. Therefore, the STIDE-BoSC
approach achieves a precision rate of 61.82%.

5.4 Ablation Study

Analyzing multiple properties of syscalls is essential for detect-
ing various container attacks. In our work, we build the anomaly

vector by consolidating three key features: USI, UAI and FI. In
this subsection, we conduct an ablation study to assess each fea-
ture’s contribution to our approach’s performance. Specifically, we
evaluate each feature (e.g., USI) by keeping the remaining two
features (e.g., FI, UAI) constant across normal and malicious data
(i.e., zero-variance). Using the AUC score, we compare the features’
performance separately and together over three different attack
scenarios, each from a different threat impact category. As shown
in Figure 4, FI is the main discriminator in the CVE-2012-2122 sce-
nario. In detail, both normal and attack sequences do not contain
unseen syscalls or arguments. Therefore, relying solely on USI or
UALI leads to an identical encoding of normal and attack sequences,
thus rendering a random classifier with an AUC score close to
50%. The M-U_HELPER scenario involves both USI and UAI as the
main contributors. Here, attackers attempt to maliciously write to
sensitive directories and backdoor executables, generating unseen
syscalls and arguments. In the case of CVE-2019-0191, UAI is the
main differentiator. In this scenario, attackers try to overwrite ar-
bitrary files in the filesystem, yielding several unseen arguments.
In summary, counting on one feature cannot gauge the full scope
of container "anomalous" behavior. Therefore, it is necessary to
incorporate multiple syscall properties describing different aspects
of container behavior to detect attacks generically.

5.5 Assessment of Execution Time

Our approach’s effectiveness also lies in its time complexity. In
this subsection, we evaluate the sequence execution time of our
approach compared to related works. The time complexity of our
system relies on 1) the number of syscalls in a sequence and 2) the
number of containers running on the host. Thus, we conducted our
experiment under two settings. In the first setting, we run a Flask-
python web application that yields different numbers of syscalls
within a sequence (7 = 1s). The number of syscalls ranges from 100
syscalls, a scenario where only a few users are browsing the appli-
cation, and 20,000 syscalls, representing high application traffic. In
the second setting, we spin different numbers of containers (i.e.,
replicas), ranging from one container illustrating a significantly less
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Figure 5: Average sequence execution time of our approach and
related works when monitoring n containers.(ns) refers to the number
of syscalls executed within a sequence.

dense host and 30 containers representing a high container-per-
host density. We assessed the sequence execution time on a Lenovo
Thinkpad P15 laptop with an Intel Core i7-10850H CPU 2.70GHz
processor. Using 8 CPU cores, we parallelize the classification of
syscall sequences generated simultaneously by running containers.
Figure 5 shows our approach’s average sequence execution time
compared to CDL and STIDE-BOSC. Using 100 runs on each setting,
our solution processes and classifies syscall sequences faster than re-
lated works. We achieve a sub-linear time complexity as the number
of syscalls increases within a sequence and the number of running
containers increases on the host. Specifically, we process and clas-
sify 30 sequences of 10,000 to 20,000 syscalls simultaneously in
3.52 seconds on average, faster than CDL and STIDE-BoSC by 3.25
seconds and 5.15 minutes, respectively. We attribute the achieved
time complexity to our lightweight graph-based syscalls encoding
and our auto-encoder network’s shallow architecture. To illustrate,
the average size of a scap file representing a raw sequence of 20,000
syscalls is 6.10 MiB, while its anomaly vector is only 36 Bytes, lead-
ing our network to process sequences faster. However, despite the
lightweight frequency-based encoding of CDL, the use of a reason-
ably sizeable auto-encoder network makes it relatively slower. For
the STIDE-BOSC approach, encoding and testing numerous short
10-grams within large syscall sequences is time-consuming, leading
to minutes of processing and, thus, to a quick desynchronization
with real-time activities. In short, our approach can monitor con-
tainers even at the peak container-per-host density with reasonable
latency, making it practical in practice.
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Table 5: Malicious trace from the CWE-434-PHP scenario.
The attack is launched [] at t=09:52:42.052274, first detected
[] at t=09:52:43.052274, last detected at t=09:52:49.052274 and
completed at t=09:52:50.052274. The lead time is 6 seconds.

Timestamp Anomaly Vector
F1 USI UAI

09:52:40.052274 0.0221 0.0000 0.0000
09:52:41.052274 0.0472 0.0000 0.0000
09:52:42.052274 0.0181 0.0000 0.0000
09:52:43.052274 | 0.0318 | 3.1956 | 3.0434
09:52:44.052274 | 0.0135 | 0.5500 | 0.3001
09:52:45.052274 0.0593 0.0000 0.1777
09:52:46.052274 0.0287 0.0000 0.0000
09:52:47.052274 0.0319 0.0000 0.0000
09:52:48.052274 0.0761 0.0000 0.1666
09:52:49.052274 | 0.0724 | 15.897 | 61.384
09:52:50.052274 0.0571 0.0000 0.0000
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Figure 6: Average lead time of our solution on different attacks.
Attacks that fall in the []area are completed before being detected during
the peak host density (30 containers).

5.6 Assessment of Attack Lead Time

The effectiveness of an IDS in real-world settings also relies on
the attack detection lead time. The lead time is the duration from
detecting the first symptoms of an attack to the time of the attack
completion. That is to say, it is the period during which DevOps
and security teams can act to prevent further damages (e.g., kill
a compromised container to prevent lateral movement or privi-
lege escalations to the underlying host system). In this subsection,
we measure the lead time achieved by our solution. As shown in
Figure 6, the lead time differs among attacks due to two factors:
1) the longitude of the attack and 2) the attacker’s knowledge of
the system. Generally, attacks allowing an unprivileged adversary
to modify or execute root processes (e.g., tampering with Sysdig)
often require multiple steps and are thus more likely to be detected
early. For example, in the CVE-2016-9962 attack, the exploit chain
involves 1) shellshock to obtain a shell inside the victim container, 2)
a reconnaissance round to know that the docker socket is mounted
and exposed, and 3) creation of a container with the host’s PID
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namespace. Therefore, the detection of shellshock makes our solu-
tion generate a lead time of 18.87 seconds ahead of the privilege
escalation. The same applies to the M-SYS_MODULE attack. The
alarm triggered by downloading the kmod tool to load the reverse
shell module into the kernel accelerates the detection of the attack
by 21.45 seconds. However, attacks that involve a few steps can
generate short to zero lead time. For example, in the CVE-2019-0191
attack, the combination of the directory traversal technique with
the attacker’s knowledge of the system (i.e., the number of directo-
ries to climb) renders the attack very instant with zero lead time,
making its early detection infeasible under our solution. Yet, our
approach achieves a good detection lead time across ten attacks,
even at the peak container-per-host density.

5.7 Case Study

We describe how our detection approach identifies various types of
attacks, highlighting two examples from each dataset.

Sprocket Information Leak (CVE-2018-3760). Early versions of
Sprockets have a vulnerability that allows attackers to craft mali-
cious requests to access files outside an application’s root directory
on the filesystem [18]. Based on our analysis, the attack is a two-step
procedure. First, the attacker attempts to directly access the passwd
file in /etc, resulting in the FileOutsidePaths error message with
a list of existing paths. This causes multiple unseen arguments (i.e.,
paths) to manifest in both stat and open syscalls. Second, armed
with existing paths, the attacker leverages the directory traversal
technique to retrieve the passwd file via crafted paths, generat-
ing’../../../etc/passwd’ and ’%2e%2e/%2e%2e/etc/passwd’
as unseen arguments. Last, the unusual access to passwd triggers
changes in Sprockets’ asset cache directory, yielding mkdir and
rename as unseen syscalls. In short, both unseen syscalls and un-
seen arguments lead to high USI and UAI, thereby making our
solution detect this attack effectively.

MySQL Authentication Bypass (CVE-2012-2122). Early ver-
sions of Oracle MySQL have a vulnerability that enables attackers
to circumvent authentication and obtain root access to the data-
base [17]. In particular, an attacker can bypass authentication by
repeatedly entering the same wrong password until the login is
successful. Due to this trial and error, seven syscalls occur at a
high rate, namely getpeername, setsockopt, fcntl, read, write,
shutdown, and close. In detail, getpeername, setsockopt, and
fentl initially obtain the socket remote address and set its parame-
ters. Next, read and write exchange data during the authentication
process. In case of authentication failure, both shutdown and close
end the connection. During the attack, these syscalls recur multiple
times to authenticate successfully, yielding high syscall frequency
and, subsequently, a high FI. However, this attack can sometimes
succeed randomly with only a few login attempts [43]. That is, an
attacker can enter the same wrong password only a few times to
bypass authentication, yielding a low FI. This makes our solution
detect this attack with a considerable false-negative rate.

Release_Agent Abuse (CVE-2022-0492). A logical flaw in the
kernel cgroups allows attackers to leverage the release_agent
feature to escape container and elevate privileges on its underly-
ing host [12]. In detail, when a process terminates in cgroups and
the notify_on_release flag is enabled, the kernel executes the
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release_agent file with elevated privileges. This suggests that if
an attacker succeeds in writing to release_agent, they can make
the kernel run arbitrary code as root. Our analysis of this attack
shows that the attacker first accesses an over-permissive and un-
hardened container (i.e., —security-opt seccomp=unconfined),
leverages the sys_admin capability to mount the cgroupfs driver,
and creates a child cgroup. These steps generate mount and mkdir
as unseen syscalls and /usr/sbin/mount, /sbin/mount.cgroup,
and /usr/sbin/mkdir as unseen arguments. Next, the attacker
sets notify_on_release to 1 to enable the release notification,
yielding dup as an unseen syscall. Further, the attacker retrieves the
container’s OverlayFS path on the host from /etc/mtab, which
allows for readlink as an unseen syscall and /sbin/sed as an
unseen argument. Then, the attacker creates a malicious script and
places it under the retrieved path, editing the release_agent file
to run it, which induces some file creation related unseen syscalls,
namely dup and pipe, followed by some permissions related unseen
syscalls such as umask, fchmodat, and setpgid. Last, the attacker
spawns the process that directly terminates inside the child cgroup,
which yields dup as an unseen syscall and /sbin/sh as an unseen
argument, allowing the attacker to execute malicious code with
elevated privileges. In short, this attack induces high USI and UAI,
hence making it easily discernable by our solution.

Dirty Pipe (CVE-2022-0847) An improper initialization flaw was
found in copy_page_to_iter_pipe and push_pipe functions in
the Linux kernel since 5.8 [5]. Usually, the CPU handles pipe data in
memory pages. When a page becomes full, the kernel sets the PIPE_-
BUF_FLAG_CAN_MERGE flag on the page cache to merge data between
pipe pages without rewriting data to memory. Unfortunately, when
the page cache is cleared, the merge flag is retained, allowing at-
tackers to disclose or edit interesting root files. According to our
analysis, the attacker first downloads the wget utility to retrieve
the compiled malicious payload from a server and changes its mode
to executable, resulting in some socket-related unseen syscalls,
namely sendto, recvfrom, and getsockopt, followed by some file-
permission unseen syscalls such as chmod, fchmodat. Also, this
yields some unseen arguments such as /etc/apt/sources.list
and /usr/bin/chmod. Furthermore, the attacker executes the pay-
load to access the content of some root files. This payload performs
three tasks: 1) opens a pipe, which allows for pipe as an unseen
syscall, 2) sets the merge flag by filling the page caches, and 3)
clears and replaces the pipe with data the attacker wants to access,
allowing for splice, mremap, and dup as unseen syscalls to per-
form the splicing of the pages. In short, unseen syscalls and unseen
arguments lead to high USI and UAI, which makes our solution
detect this attack effectively.

6 RELATED WORK
Several existing works aim to handle container runtime threats.

Anomaly-based. These works monitor containers based on two
metrics, namely resource consumption and syscalls. Various so-
lutions [53, 66] leverage container resource usage (e.g., CPU) to
monitor container behavior. Fundamentally, the premise behind
such solutions is that if an anomaly occurs in a container, it should
trigger a deviation in its resource usage (e.g., crashing a container
can consume all its CPU quota). Unfortunately, these solutions
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deal merely with attacks that hijack resources, such as the Cryp-
tojacking attack [31]. Thus, attacks that do not abuse container
resources can easily circumvent these solutions. Regarding syscall-
based solutions, existing container-based HIDSes rely mainly on
the frequency of syscalls. Tien et al. [61] incorporate Falco [60] to
define syscall-related rules to detect attacks. Specifically, they rely
on the frequency at which those rules are triggered. Abed et al. [2]
combines STIDE and BoSC to define container normal behavior and
further apply a mismatch-based threshold to flag anomalies. Lin et
al. [39] introduce a solution that turns syscall streams into times-
tamped frequency-based vectors and further feeds those vectors
to an auto-encoder network for classification. Unfortunately, these
solutions are restricted to specific forms of anomalies and cannot be
applied to a generalized scale. Therefore, we propose a solution that
analyzes and contextualizes different properties of syscalls. The
evaluation results show that our solution detects various anomalies
and robustly withstands the high scalability of containers.

Policy-based. These tools use rules to define the normal behavior
of containers. They can either focus on enforcement or auditing.
For example, enforcement tools such as Confine [23], Seccomp [9],
SELinux [56], and AppArmor [25] react to anomalies either by block-
ing syscalls or stopping compromised containers. On the other hand,
auditing tools such as Falco and Auditd [34] only raise alarms when
a container steps outside its baseline. Unfortunately, the constant
emergence of previously unknown threats impedes these tools’
effectiveness, rendering anomaly-based solutions more appealing.
Thus, we introduce an anomaly-based HIDS that defines the “nor-
mal” baseline of each container individually to uncover deviations
in production. Our solution shows strong detection capabilities
against various anomalies while avoiding the need to write and
maintain detection rules.

7 LIMITATIONS

We have shown that our solution detects various container attacks
with negligible false alarms. Yet, some aspects of our approach need
to be considered in future research.

Failure to detect Heartbleed (CVE-2014-0050). OpenSSL 1.0.1
before 1.0.1f has a vulnerability that enables attackers to trick
servers into disclosing data stored in memory [20]. SSL requires
a heartbeat extension to maintain a TLS session. This extension
allows clients to send heartbeat requests to the server, consisting
of a payload and its length. The server stores the payload content
in its memory and responds with it based on the specified payload
length. Given that the server blindly allocates memory for the re-
sponse without verifying the payload size, an attacker can craft a
malicious heartbeat request with a length larger than the actual
payload length and cause the server to reply with additional data
stored in memory. Unfortunately, this attack neither produces a
high number of syscalls, nor requests abnormal kernel features, and
nor maliciously accesses sensitive files, making our approach and re-
lated works generate identical encoding for both normal and attack
sequences, which ultimately results in random classifications.

Background knowledge attacks. Our solution can be vulner-
able to attacks where adversaries know the approach. To illus-
trate, assume that an attacker wants to replace the passwd file in
/etc with a crafted file located in /tmp. Assume further that the
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rename syscall is previously unseen and both link and unlink
syscalls are previously seen. Armed with the knowledge of pre-
viously seen syscalls, an attacker may use the following syscalls:
unlink(’/etc/passwd’),link(’/tmp/crafted’,’/etc/passwd’)
to perform the task instead of executing rename (* /tmp/ crafted’,
’/etc/passwd’). Here, the attacker leverages unlink to delete the
file from the filesystem and then uses link to copy the crafted file
to /etc. Since the operation does not trigger any unseen syscalls
and our approach does not consider arguments of both 1ink and
unlink, the replacement of the passwd file will pass undetected.
Although our solution can be tricked by seen equivalent syscalls,
we believe the operations of security-critical syscalls such as clone,
execve, and mount cannot be performed by alternative syscalls,
thus making sensitive activities likely detectable by our approach.
Furthermore, our solution can also be theoretically prone to race
condition attacks (i.e., TOCTOU [49]). Given that the value of a
syscall argument is supplied by a pointer (e.g., file path), in the time
between when the syscall handler consumes the pointer and when
Sysdig extracts the value for monitoring, an attacker could replace
the pointee with a “previously seen® argument to circumvent detec-
tion. Last, attackers can also leverage adversarial machine learning
techniques to attack the auto-encoder, causing the model to yield
false classifications and ultimately bypass detection [51]. We will
investigate the feasibility of these attacks in future work.

Real-world container datasets. We merely test our approach
against simulated attack scenarios. Although both LID-DS and
CB-DS datasets involve different container attacks, they do not
include real-world attacks data. Thus, we argue that realistic con-
tainer datasets are required to fully assess the effectiveness of our
approach in practical cloud settings. Unfortunately, this is unachiev-
able at this time as there is no publicly available datasets.

8 CONCLUSION

This paper presents an anomaly-based intrusion detection tech-
nique for monitoring containers using syscalls. Unlike existing
solutions, our work leverages a graph-based model to analyze dif-
ferent syscall properties within their context, enabling us to uncover
intrinsic activities manifested by anomalies. Given the performance
results achieved on various attack scenarios, and according to the
comparative study we have carried out, we showed that our ap-
proach effectively detects container attacks with few false alarms
and with reasonable processing overhead, hence outperforming
existing tools. Also, despite the discussed limitations, our approach
can still be practical in realistic cloud settings. Precisely, our HIDS
can efliciently monitor containers for previously unseen attacks
and also serve as a starting point for additional activities such as
forensics, triaging, or incident response.
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