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Abstract

Malware is one of the prevalent security threats. Sandboxes and, more
generally, instrumented environments play a crucial role in dynamically ana-
lyzing malware samples, providing key threat intelligence results and critical
information to update detection mechanisms.

In this paper, we study the evasive behaviors employed by malware au-
thors to hide the malicious activity of samples and hinder security analysis.
First, we collect and systematize 92 evasive techniques leveraged by Win-
dows malware to detect and thwart instrumented environments (e.g., debug-
gers and virtual machines). Then, we implement a framework for evasion
analysis of x86 binaries and analyze 45,375 malware samples observed in
the wild between 2010 and 2019; we compare this analysis against popular,
legitimate Windows programs to study the intrinsic characteristics of such
evasive behaviors.

Based on the results of our experiments, we present statistics about the
adoption of evasive techniques and their evolution over time. We show that
over the past 10 years, the prevalence of evasive malware samples had a slight
increase (12%). Moreover, the employed techniques shifted significantly over
time. We also identify techniques that are specific to malware, as opposed
to being employed by both malicious and legitimate software. Finally, we
study how the security community reacts to the deployment of new evasive
techniques. Overall, our results empirically address open research questions
and provide insights and directions for future research.
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1. Introduction

Malware is one of the most dangerous and prevalent Internet threats.
Financially-motivated threats, such as ransomware [1, 2], banking trojans [3],
and cryptominers [4, 5, 6], have dominated the malicious landscape in the
past years [7, 8]. Given the complexity of applying static analysis to modern
malware samples, especially when heavily obfuscated [9], malware analysts
often rely on dynamic analysis to reverse-engineer new samples, providing
key threat intelligence results and critical information to update detection
mechanisms. In fact, dynamic analysis is starting to be also employed in
malware detectors, some of which leverage emulators to execute suspicious
binaries in an instrumented environment [10].

Previous literature studied how malicious samples employ techniques to
recognize when they are executed in a controlled environment and subse-
quently hide or alter their malicious behavior. The detection of the analysis
environments is performed through fingerprinting : Malware samples look
for specific artifacts left by the analysis components (or agents). If any such
artifact is identified, the malicious activity is not executed (or executed differ-
ently) [11, 12, 13, 14, 15]. Different solutions have been proposed to address
this problem. Multiple path exploration approaches force the execution of the
whole program to discover hidden behaviors but suffer from the well-known
path explosion problem [16]. An alternative is to detect inconsistencies be-
tween the execution of a sample in a sandbox and the execution of the same
sample without the instrumentation layer. This approach has been tested by
Kirat et al. [17], who measured the difference between bare-metal and sand-
box executions to detect “paths” related to evasion techniques. However,
this method does not intercept low-level system interactions, such as system
calls and x86 instruction, because the bare-metal setup can only reason about
raw disk content. A more recent solution is to execute the malicious sam-
ples inside a Dynamic Binary Instrumentation (DBI) framework that hides
the presence of the analysis environment, identifying anti-instrumentation
techniques [18, 19, 20].

This paper provides the first comprehensive, systematic, and longitudinal
study of the evasive behaviors adopted by Windows malware. Our research
attempts to answer important questions that are currently still open: What
are the prevalent evasion techniques adopted by malware samples to hin-
der security analysis? How have such techniques evolved in the past years?
How does the security community react to the adoption of a new evasive
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technique? Are evasive techniques also adopted by legitimate programs? To
answer these questions, we first collect and systematize 92 evasive techniques
adopted by Windows malware. To the best of our knowledge, we provide the
most extensive taxonomy of evasive techniques: The previous most com-
plete surveys [21, 22] cover 41 techniques. Then, we develop a fine-grained
framework to identify and collect information about the evasive behaviors
present in Windows programs. Built on top of Arancino [18], our framework
leverages the capabilities of a DBI tool, Intel Pin, to instrument the target
executable and identify when the program under analysis attempts to collect
artifacts to evade the analysis itself.

Using our framework and taxonomy, we study the evasive behaviors adopted
by 45,375 malware samples observed in the wild between 2010 and 2019. We
identify the most common evasive techniques and correlate them with the
different malware families, providing insights about different malware cam-
paigns. To further investigate the characteristics of such evasive techniques,
we test their adoption in popular, legitimate Windows programs. Our lon-
gitudinal analysis indicates that the amount of evasive malware samples has
not increased significantly in the past 10 years. However, the techniques
adopted by these evasive samples varied over time.

In summary, we make the following contributions:

• We systematically study evasive behaviors employed by Windows mal-
ware by collecting 92 techniques used to evade instrumentation envi-
ronments (e.g., Debuggers, Virtual Machines)—the largest collection so
far—and providing a taxonomy to classify such techniques according
to their semantics and characteristics.

• We analyze 45,375 malware samples observed in the wild and 949 popu-
lar, legitimate applications. We study the correlation between malware
families and the adopted evasive techniques, and we analyze both ma-
licious and legitimate programs to compare their evasive behaviors.

• We perform a longitudinal study of the adoption of evasive techniques
in malware families between 2010 and 2019, and we provide statistics
and insights about the evolution of evasive behaviors. Additionally, we
empirically estimate how the community reacted to and influenced the
adoption of evasive techniques during the same period. For instance,
we show that the adopted techniques varied in the past years, while
the number of evasive samples is rather stable.
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Table 1: Comparison of large-scale studies of evasive malware techniques: dynamic
analysis, static analysis, 3 or 7 if the work provides or not, respectively, the considered
analysis.

Year
Taxonomy

Dynamic-Static
Analysis

Longit. Malware vs # Evasive # Samples
Analysis Goodware Techniques (# Families)

Chen et al. [26] 2006 3 7 7 8 6,222 (7)
Lindorfer et al. [14] 2011 3 7 7 14 1,500 (175)
Branco et al. [27] 2012 7 7 7 51 4M (7)
Barbosa et al. [28] 2014 7 7 7 51 12M( 7)
Polino et al. [18] 2017 7 7 7 24 7006 (7)
Miramirkhani et al. [15] 2017 3 7 7 44 7

Oyama [29] 2018 7 7 7 28 8243 (3044)
Afianian et al. [21] 2019 3 7 7 7 46 7

D’Elia et al. [19] 2020 3 7 7 45 1000 (7)
Chen et al. [30] 2021 3 2009-2014 7 41 17,283 (6)

This work 2021 3 2010-2019 3 92 45,375(2867)

2. Related Work

The analysis of the evasive techniques by which malware determines the
presence or absence of an analysis system is a wide research topic for which
we refer the reader to [21, 22] that provide comprehensive surveys and tax-
onomies of 41 existing anti-analysis techniques. Unlike our work, which quan-
tifies the adoption of 92 evasive techniques from the dynamic execution of
actual malware, they put in place a qualitative analysis only. In this sec-
tion, we describe the related works that investigate the evasive behavior in a
large-scale study of malware found in the wild. Table 1 provides a compar-
ison of the recent works in the area, according to the type of analysis they
conducted. Regarding the analysis of evasive techniques used by legitimate
non-malicious software vendors in order to prevent analysis or piracy of their
software, we refer the reader to [23, 24, 25].

Chen et al. [26] proposed a first taxonomy of malware anti-analysis tech-
niques by comparing execution traces from different environments. They
found that 2.7% of 6,222 samples from 2006-2007 exhibited less behavior
when running in a VM versus a bare-metal system.

Branco et al. [27] and Barbosa et al. [28] introduced various static detec-
tion methods for anti-debugging and anti-VM techniques and run analysis
over 4 and 12 million samples, respectively, to show the state of evasion
techniques in use. In their study, anti-analysis operations were detected
only through static analysis, while dynamic behavior was not considered.
The main problem with static analysis resides in packing and obfuscation
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techniques, which are widely used by malware authors precisely to avoid it.
Indeed, since static analysis is based on parsing and comparing executable
byte sequences, obfuscated samples are opaque to it. Additionally, there
is no guarantee that any matched technique is actually executed. On the
contrary, with dynamic analysis, we can precisely identify evasive techniques
while they are executed, even when packing and obfuscation are applied. In
summary, dynamic analysis is more precise in this context. Compared to
static analysis, our approach—and dynamic analysis in general—is resilient
to packing due to the dynamic nature of the DBI analysis that allows a
profound control over the instrumented binary.

Chen et al. [30] surveyed anti-VM and anti-debugging techniques in 17,283
“generic” and targeted (APT) malware samples collected between 2009-2014.
The authors found that these techniques became more prevalent over the
surveyed timeframe and that their presence was negatively correlated with
antivirus detection. They also observed that APTs generally do not use
as many anti-analysis techniques as generic malware and that they have de-
creased their use over time. Although their study is similar to the present one,
since they provide a longitudinal study of the trends in anti-analysis tech-
niques analyzing malware samples, there are also many differences. First,
in their study, anti-analysis techniques were detected only through static
analysis, while dynamic behavior was not considered. Therefore, it shares
the same limitations of [27, 28] presented before. Moreover, they limit their
analysis to only six malware families without clarifying in detail the tech-
niques executed by each of them. Consequently, their results are biased by
the restricted number of families considered. In the present work, instead,
we strive to select malware samples equally distributed in time.

Polino et al. [18] found that 15.6% of 7,006 malware samples collected
from VirusTotal between October 2016 and February 2017 exhibited anti-
instrumentation behavior (not necessarily solely anti-DBI). Similarly to the
present work, the authors leverage the capabilities of a DBI tool, Intel Pin,
to instrument the target executable and identify when the program under
analysis attempts to collect artifacts to evade the analysis itself. However,
they do not consider Anti-VM and Anti-Debugging behaviors.

Miramirkhani et al. [15] assesses the threat of malware sandbox evasion
strategies that leverages artifacts indicative of the “wear and tear” and “ag-
ing” of a system to identify artificial environments and demonstrate its effec-
tiveness against existing sandboxes used by malware analysis services. Com-
monly to this work, as presented in Tables 3 and 4, we check the “wear-and-
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tear” state of the machine. However, while we focus on studying the evasion
techniques currently exploited by malware, this work, instead, proposes novel
evasive techniques against the existing sandbox mechanism.

Oyamama [29] analyzes a dataset of dynamic malware analysis results and
examines trends in the Anti-Analysis operations executed by malware sam-
ples collected in 2016. Among 8243 malware samples, 856 (10.4%) samples
executed at least one type of the 28 Anti-Analysis operations investigated.

D’Elia et al. [19] present a DBI-based prototype that, similarly to Aran-
cino [18] and our work, offers a stealthy execution environment based on an
observe-check-replace design to intercept evasive attempts and hide imper-
fections. They demonstrate its effectiveness against a set of 45 highly evasive
samples.

In contrast to the presented studies, in this work, we perform a longitu-
dinal study of the adoption of evasive techniques by dynamically executing
malware to provide quantitative results and insights into their evolution and
adoption. Moreover, we explore the adoption of evasive behaviors in legit-
imate programs to investigate whether evasive techniques are intrinsically
evasive or also used for legitimate purposes. Finally, we analyze a higher
number of samples and techniques.

3. Taxonomy of Evasive Techniques

An evasive technique is a specific activity performed by a malware sample
to detect a dynamic analysis system (and subsequently thwart it). In partic-
ular, we focus on any activity, under the form of system calls, Windows API
functions, memory accesses, or x86 instructions, that leaks the presence (i.e.,
artifacts) of analysis environments. We study evasive techniques targeting
virtual machines and sandboxes (i.e., Anti-VM techniques), as well as debug-
gers and DBI implementations (i.e., Anti-Debugging techniques). Note that
some techniques can overlap this broad categorization because of common
artifacts leaked by both classes of environments.

After gathering and analyzing 92 evasive techniques found in the litera-
ture, we propose to classify them according to the semantics of the action(s)
performed on the OS. Proceeding thus, starting from systematization previ-
ously presented [15, 20, 26, 14, 21, 30], we develop a taxonomy consisting of
16 semantic-equivalent groups. In the following, we list the groups, providing
a few examples of techniques that belong to each. For further details on each
technique, we refer the reader to Appendix A.
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Memory Fingerprinting. These techniques access memory regions of the
running process to detect debuggers. In fact, debuggers modify several sys-
tem variables associated with their target process. For instance, the PEB, a
structure present in each Windows process, contains variables designed to
indicate the presence of a debugger.

Exception Handling. With this type of approach, a malware sample
throws exceptions that a debugger handles for debugging purposes. The
malicious sample sets up a handling routine for the exception and, if the rou-
tine is never executed, it means that the debugger caught the exception. A
less trivial example is NtClose(INVALID HANDLE): Closing an invalid handle
causes an exception only if there is a debugger attached to the process.

CPU Fingerprinting. This category contains all the Anti-VM techniques
that fingerprint the CPU, detecting differences between physical CPUs and
virtualized ones. This behavior can be intended, or it can be a side-effect due
to incorrect execution of sensitive instructions by the hypervisor. An example
is CPUID, an instruction that retrieves information and features from the CPU
and returns the presence of a hypervisor and its brand if present [31].

Table Descriptors. This category contains x86 instructions used to retrieve
the addresses of OS Table Descriptors. These addresses frequently change
if a hypervisor is present. Thus they have been used to detect virtualized
environments. Nevertheless, these techniques are viable only on single-core
machines—they are not useful with modern systems.

Traps. Another way to throws exception is the use of x86 trap instructions.
As a matter of fact, INT 3 is the typical breakpoint instruction intercepted
by a debugger. If this instruction is present in a non-debugged program, the
program receives the corresponding signal. A similar concept applies to VM
trap instructions like VPCEXT.

Timing. These techniques contain all the methods to precisely measure
time-flow and CPU clock ticks. These measurements are used by malware
to spot the presence of slowdowns during the execution of malicious code.
Most analysis systems have a significant impact on performance. These slow-
downs are easily detectable by a malware sample. For example, it is possible
to measure the number of ticks elapsed during the execution of a set of in-
structions using the RDTSC instruction. If this instruction triggers a virtual
machine exit, the number of ticks is significantly higher.

Stalling. This category contains all the techniques that put the executable
in sleep mode to avoid detection. These techniques work because sandboxes
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have limited time allocated for the analysis, so they could miss malicious
activities of malware samples that activate after a long period. Sleeping
behaviors can fool even debuggers; a loop that continuously invokes sleeping
routines is frustrating to step through during manual debugging.

Human Interaction. In an automated system where thousands of malware
samples are analyzed inside virtual machines, there is no human interaction.
There is a category of evasion techniques that exploit this absence of inter-
action to identify the instrumented environment. For example, a malware
sample can assume that the environment is instrumented if the mouse cursor
is not moving.

Registry. Some malware samples access the Windows Registry searching for
the virtual machine or debuggers-related artifacts such as VirtualBox Guest
Additions. This class of techniques considers the use of a blacklist of resources
that should not be accessed.

System Environment. This class contains all the techniques that detect
system-related information that can reveal the presence of a VM or debugger.
For instance, an using GetAdaptersInfo to retrieve the MAC information.
MAC address or graphic devices have a manufacturer-fixed part that is well
known for virtual machines.

WMI. An extension of the System Environment category is the WMI class.
WMI is a Microsoft technology for Windows machines maintenance. Us-
ing the WMI framework and the corresponding query language WQL, it is
possible to query any information about Windows machines’ configuration
and change their settings. Evasive malware can exploit these capabilities to
detect analysis tools or installed software.

Process Environment. This category refers to techniques used to col-
lect information about the running process. An example is NtGetContext-

Thread(CONTEXT DEBUG REGISTERS): this API call retrieves the values of
hardware debug registers, employed to perform hardware debugging.

File System. This category includes all those techniques that rely on arti-
facts present on the file system (e.g., the presence of a Python-based agent,
agent.py, in the Home folder).

List Processes. Malware can enumerate the running processes to identify
an agent process (e.g., python agent.py).

List Services. These techniques enumerate the active services to identify
an analysis service.

Drivers. Malicious samples can enumerate the list of drivers to identify
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emulated or virtualized devices.

Complexity of the Evasive Techniques. We study the complexity of the
techniques mentioned above and the difficulty of their implementation. To
do so, for each of the 92 techniques, we implement a program that leverages
a given technique to detect when it is running in a controlled environment,
i.e., returning True or False. By statically analyzing each produced binary
program, we count the number of basic blocks, instructions, and function
calls required to implementation the 92 evasive techniques (columns BB, I,
and C in Tables 3 and 4). We also report whether the implementation of each
technique, at the source-code level, requires writing assembly code, which in-
dicates more advanced skills (column ASM in Tables 3 and 4). While none
of the studied techniques require specific privileges or can be considered com-
plex or challenging to implement, some groups of techniques certainly result
in smaller portions of code. For instance, Memory Fingerprinting techniques,
although they require writing assembly code, are implemented with a few in-
structions (8 to 16) and without invoking any additional functions. On the
contrary, List Processes and List Services techniques result in larger portions
of code (up to 340 instructions) containing several function calls (up to 27).

4. Analysis Framework

To perform our study, we developed an automated analysis framework
to analyze the evasive behaviors of Windows programs. Following a recent
research trend [18, 20, 19], which demonstrated the effectiveness of DBI tools
in defeating evasion attempts, we leverage Intel Pin to fully control the exe-
cution flow of the instrumented program. In fact, by instrumenting a binary,
we can identify when it attempts to spot artifacts to evade the analysis. Our
framework extends a previously proposed system [18], and it can instrument
executables at four levels: (1) Instruction (monitor each executed instruc-
tion); (2) API Hook (hook interesting Windows APIs); (3) Syscall (hook
interesting syscalls); (4) Memory Access (monitor access to specific memory
regions).

Leveraging these four instrumentation levels, we implemented a set of
countermeasures that dismantle all the 92 presented evasion techniques. Our
system inserts two hooks before and after instructions or function calls that
can be associated with an evasive technique. The first hook is executed before
the evasion while the second after it. Both hooks contain a logging routine
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that logs the evasive behavior and applies hiding countermeasures. We are
able to insert hooks with such controls at the instruction level, leveraging
Just-In-Time recompilation of Intel’s PinTool. Our system has four main
modules: the System Calls Hooker and the Windows API Hooker,
which detect and apply the countermeasures of evasive techniques based on
system calls and Windows APIs, and the Memory Accesses Controller
and the x86 Instructions Monitor for evasion based on memory reads and
x86 instructions. Moreover, we implemented a Library Tracer module to
log the call stack of the evasive technique and related libraries. Windows
libraries execute some instructions, API calls, or syscalls for legitimate pur-
poses. Therefore, if we consider only their presence, we cannot claim that the
malware is evasive. Using the Library tracer, we can detect which activities
are executed from the malware text segment.

It is important to note that our system does not stop its analysis after the
first detected technique. In the case of malware samples that implement a
sequence of multiple evasions attempts, our system detects the first technique
executed and applies the corresponding bypass mechanism described before,
avoiding that the malware triggers evasive behavior. In this way, our system
can analyze and identify any secondary techniques executed after the first
“barrier.”

A common bypass mechanism employed throughout our analysis consists
of hiding artifacts that are commonly present in sandboxes. As an example,
whenever a malware samples accesses file information executing syscalls like
NtOpenFile, NtCreateFile, NtOpenKey, or NtQueryAttributesFile, our
framework returns a NOT FOUND response if the file path contains suspicious
keywords defined in Table 5 (e.g., “virtualbox”). In other words, our system
logs the attempt to retrieve information about the environment and ensures
that the API call returned value corresponds to a not existing key. A sim-
ilar countermeasure is applied when the malware accesses Keys inside the
Windows Registry or enumerates drivers, Windows services, and processes.
Differently, a relevant bypass mechanism involves reducing the value returned
by time measurement instructions such as RDTSC to eliminate the overhead
introduced by analysis environments. We include an extensive discussion of
our evasion countermeasures in Appendix A. Moreover, our countermeasures
follow the directions established in previous work [18, 20, 19].

Validation. We manually validated our framework by developing “test”
programs and verifying that our framework could identify the usage of all
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the 92 (known) techniques described in Section 3. Moreover, we tested our
detection system against Pafish [32], a known tool that implements several
evasive techniques. Our framework was able to detect all the techniques im-
plemented by Pafish, remaining undetected. Naturally, this does not guar-
antee that our framework can detect all the malware evasive behavior that
malware can adopt, as it is an undecidable problem. We discuss our limita-
tions in Section 6.

5. Evasive Behavior Analysis

In this section, we describe our experimental setup and the results of our
study, which specifically aims to answer the following research questions.

RQ1. What are the most common evasive techniques adopted by malware?
We analyze 45,375 samples from 2,867 different families and report insights
about the adopted evasive technique together with the specific keywords
searched by samples to spot analysis artifacts, e.g., “vbox” (Section 5.2).

RQ2. Is there a correlation between malware families and the adopted evasive
techniques? We study this correlation by training and evaluating a set of
classifiers that aim at distinguishing malware families by looking at the set
of adopted techniques (Section 5.3).

RQ3. Has the number of adopted evasive techniques, per family and per
category, changed over the past 10 years? When did each evasive technique
appear for the first and last time? We perform a longitudinal study over the
past 10 years, and we provide insights into the evolution of evasive behaviors
over time (Section 5.4).

RQ4. How does the adoption of malware evasion techniques impact on the
security community, and vice versa? We harvest papers, reports, and blog
posts from the security community estimating the influence of the public
disclosure of evasive techniques on their adoption in the wild (Section 5.5).

RQ5. Are evasive techniques also adopted by legitimate software? We ana-
lyze 516 legitimate programs and study evasive behaviors in goodware. We
further compare such results with the data obtained from the analysis of
malware samples (Section 5.6).

5.1. Datasets & Setup

We leverage two datasets: a malware dataset and a goodware dataset. For
the former, we collected 45,375 malware samples from VirusTotal, distributed
in a timeframe of 10 years. Samples are ordered by the first appearance
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date on VirusTotal. In particular, we downloaded and analyzed more than
1,000 samples per quarter, from January 2010 to September 2019, in order to
perform a longitudinal, time-based analysis of the evasion phenomenon. We
collected only samples that were classified as malicious by at least 35 different
AV scanners. Such a conservative choice is coherent with what a recent study
suggested to mitigate the known label dynamics issue [33]. A lower number
of AV detections would have caused the download of possible false positives,
which would have biased our analysis. Nonetheless, we acknowledge that, as
a consequence of this choice, our dataset might not include samples that are
not well detected by the majority of endpoint solutions (Section 6).

We leveraged AVClass [34] to obtain the malware family of each sample.
Our dataset contains samples belonging to 2,867 unique families, while 1,369
samples (3%) were not tagged in any malware family by AVClass—we in-
cluded these samples in our experiments, but we did not consider them when
studying per-family trends. Figure 1 shows the number of families detected
in each quarter. The top 1,000 families account for almost the whole (93%)
dataset, while the top 100 families account for around 67% of the dataset.

For the benign dataset, we downloaded 327 executables from PortableApps.com
and 622 generic PE files from a variety of Windows OS executables. In to-
tal, we collected 949 benign executables. All the benign applications were
executable desktop applications. None of our benign samples was installed
from Windows Store. We filtered out any executables that were detected
positives by at least one anti-malware on VirusTotal. After this process, our
dataset was composed of 516 goodware binaries. All our executables were
compatible with Windows 7 and later versions.

Experimental Setup. We deployed our analysis framework on 6 Windows
10 VirtualBox VMs. Each VM is managed by our analysis manager, which
spawns the VM, sends the sample to the VM agent in charge of the DBI
analysis, and collects the evasion report. After each execution, we rolled back
the virtual machine to a clean snapshot. As done in the previous work [18],
we let each sample run for up to 5 minutes, a reasonable time to trigger most
of the evasive behaviors that our tool can detect. In fact, a recent study [35]
showed that most of the behaviors manifested by malicious samples in a
sandbox (and 98% of the executed basic blocks) are observed during the first
two minutes of execution. Finally, following the best practices for malware
experiments [36], we allowed the samples to communicate with their control
servers and denied any potentially harmful traffic (e.g., spam) during the
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Figure 1: Number of families over time

experiments. Our analysis machine runs on a separate local network with
no other machine connected, thus, self-spreading malware does not have any
local target. To support scientific repeatability, we will release our analysis
framework.

5.2. Adoption of Evasive Techniques

Among the 92 collected techniques, we measured the percentage of tech-
niques adopted during each considered year. Tables 3-4 show statistics about
the presence of each technique in our malware datasets, considering also the
taxonomy introduced in Section 3. Our data show a significant usage of
Timing and Stalling techniques in both malware and goodware, which use
them for synchronization and timing purposes. Also, an interesting result is
that 15 techniques described in the literature have never been observed in
our dataset, neither by malware nor goodware samples. These techniques
can be used for evasion purposes, but they do not seem actively exploited by
our collected samples.

Table 2 contains data about the evasiveness of the top 20 most preva-
lent families. Collected metrics show that most of them first appeared in
2010 and that not always the most prominent family is the most evasive.
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Table 2: Top 20 families. # refers to the number of samples, Date refers to the first ap-
pearance in VirusTotal of a sample belonging to the specified family, # Ev. is the number
of evasive samples exposing at least a technique, # Packed is the number of samples that
are packed according to PEiD, # Tech. is the maximum number of techniques detected
in a sample of the related family.

Family # Date # Ev. # Packed # Tech.

zbot 2412 01/2010 1564 (65%) 601 (25%) 19
vtflooder 1016 06/2014 991 (98%) 1 (0%) 15
installerex 859 01/2012 850 (99%) 2 (0%) 14
firseria 835 08/2011 801 (96%) 91 (11%) 11
multiplug 807 03/2012 782 (97%) 93 (12%) 14
fareit 750 08/2011 624 (83%) 506 (67%) 21
domaiq 743 02/2013 741 (99%) 67 (9%) 7
high 652 01/2010 652 (53%) 552 (45%) 19
vobfus 570 01/2010 227 (40%) 444 (78%) 15
delf 558 01/2010 490 (88%) 462 (83%) 17
flystudio 550 01/2010 474 (86%) 474 (86%) 20
dealply 485 12/2010 424 (87%) 433 (89%) 15
neshta 482 06/2011 470 (98%) 450 (93%) 17
installcore 474 06/2014 356 (75%) 330 (70%) 10
gamarue 473 10/2011 348 (74%) 273 (57%) 11
xorist 447 10/2010 48 (11%) 15 (3%) 12
loadmoney 440 12/2012 367 (83%) 62 (14%) 14
autoit 436 01/2010 420 (96%) 28 (6%) 18
bladabindi 404 02/2011 83 (21%) 343 (85%) 15
virlock 402 11/2014 272 (68%) 1 (0%) 15

In terms of evasion, the most evasive families are installerex and domaiq,
with a striking 99% of evasive samples, immediately followed by vtflooder

and neshta, with 98% of evasive samples. This aspect often pairs with the
maximum number of different techniques detected in a sample of the related
family. Indeed, the installerex, the vtflooder, and the neshta families
contain samples employing at least 15 different evasive techniques. The only
exception is represented by domaiq that, instead, employs up to 7 different
techniques. Interestingly, neshta is also the family with the highest number
of samples that are packed according to PEiD. Table 2 also shows rarely
evasive families such as xorist and bladabind, with 11% and 21% of eva-
sive samples, respectively. Another interesting takeaway is that families like
fareit and flystudio have few samples exposing many evasive techniques.
Figure 2 shows the normalized quarterly distribution of samples employing
evasive techniques for each category. On average, the most common exploited
categories are Timing and Stalling. Search for specific drivers is very rare,
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Table 3: Techniques D/V: Anti-Debugging, Anti-VM, Both. Used by Goodware.
BB is the number of basic blocks, and I is the number of instructions, C is the number
function calls, ASM indicates whether implementing the given technique requires writing
assembly code.

Technique #Families (%) #Goodware (%) #Malware (%) D/V G. First Last BB I C ASM

M
em

or
y

F
in

ge
rp

ri
n
ti

n
g

[37]
[26]
[38]

PEB→IsDebugged 162 (5.65) 72.0 (7.58) 982 (2.16) 01/10 09/19 1 9 0 Y
KUSER SHARED→KdDebuggerEnabled 23 (0.8) 0 (0) 102 (0.22) 01/11 08/19 1 8 0 Y
PEB→NtGlobalFlag 46 (1.6) 0 (0) 96 (0.21) 02/10 03/19 1 9 0 Y
PEB→Heap→Flags 2 (0.07) 0 (0) 3 (0.01) 05/17 02/19 4 16 0 Y
PEB→Heap→ForceFlags 2 (0.11) 0 (0) 3 (0.01) 09/16 05/17 1 10 0 Y

E
x
ce

p
ti

on
H

an
d

li
n

g

[39]

SetUnhandledExceptionFilter 1817 (63.38) 475.0 (50.0) 15651 (34.49) 01/10 09/19 8 27 3 Y
NtClose(INVALID HANDLE) 606 (21.14) 19 (2.0) 3105 (6.84) 01/10 09/19 14 47 6 N
OutputDebugString 234 (8.16) 26.0 (2.74) 794 (1.75) 01/10 08/19 14 55 6 N
POPF/D - TRAP FLAG 58 (2.02) 0 (0) 180 (0.4) 01/10 06/19 9 38 4 Y
CTRL Exception Handling 0 (0) 0 (0) 0 (0) Never Never 10 34 4 N

C
P

U
F
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[40]
[41]

CPUID(EAX=0x00000001) 1333 (46.49) 320.0 (33.68) 10070 (22.19) 01/10 09/19 1 11 0 Y
IN 234 (8.16) 0 (0) 869 (1.92) 01/10 09/19 12 51 5 Y
CPUID(EAX=0x40000000) 31 (1.08) 0 (0) 119 (0.26) 12/10 08/19 23 171 7 Y
STR 50 (1.74) 0 (0) 122 (0.27) 01/10 09/18 5 18 2 Y
SMSW 9 (0.31) 0 (0) 11 (0.02) 02/10 06/15 5 18 2 Y

T
ab

le
D

es
cr

.

[41]
SLDT 37 (1.29) 0 (0) 176 (0.39) 01/10 08/19 1 5 0 Y
SGDT 16 (0.56) 0 (0) 126 (0.28) 03/11 08/19 6 28 1 Y
SIDT 46 (1.6) 0 (0) 162 (0.36) 01/10 04/17 6 22 1 Y

T
ra

p
s

[39]
[42]
[41]
[37]
[43]

INT 3 172 (6.0) 0 (0) 747 (1.65) 01/10 08/19 11 38 4 Y
VPCEXT 105 (3.66) 0 (0) 362 (0.8) 01/10 09/19 14 52 6 Y
POP SS 92 (3.21) 0 (0) 289 (0.64) 01/10 05/19 1 14 0 Y
INT 1 74 (2.58) 0 (0) 141 (0.31) 02/10 08/19 11 37 4 Y
ICEBP 27 (0.94) 0 (0) 61 (0.13) 01/10 09/19 11 37 4 Y
INT 2D 10 (0.35) 0 (0) 39 (0.09) 03/10 05/19 11 38 4 Y

T
im

in
g [18]

[41]
[44]

GetTickCount 1464 (51.06) 198.0 (20.84) 11029 (24.31) 01/10 09/19 9 34 3 N
RDTSC/D 1398 (48.76) 168.0 (17.7) 9518 (20.98) 01/10 09/19 31 231 3 Y
QueryPerformanceCounter 994 (34.67) 140.0 (14.74) 6038 (13.31) 01/10 09/19 41 243 6 N
GetLocalTime 587 (20.47) 75.0 (7.89) 2707 (5.97) 01/10 09/19 9 41 3 N
timeGetTime 217 (7.57) 32 (3.37) 805 (1.77) 01/10 09/19 3 10 1 N
NtQuerySystemTime 174 (6.07) 20.0 (2.11) 667 (1.47) 01/10 09/19 9 50 3 N
GetSystemTimes 22 (0.77) 0 (0) 37 (0.08) 07/13 09/19 9 43 3 N
KUSER SHARED→SystemTime 13 (0.45) 0 (0) 27 (0.06) 01/13 09/19 6 61 1 Y
KUSER SHARED→InterruptTime 11 (0.38) 0 (0) 19 (0.04) 04/10 06/19 6 61 1 Y
timeGetSystemTime 3 (0.1) 0 (0) 6 (0.01) 07/10 12/17 9 43 3 N
KUSER SHARED→TickCountQuad 12 (0.42) 0 (0) 17 (0.04) 09/10 05/17 6 30 1 Y
NtGetTickCount 0 (0) 0 (0) 0 (0) Never Never 13 44 5 N
QueryInterruptTime 0 (0) 0 (0) 0 (0) Never Never 15 67 5 N
NtQueryPerformanceCounter 0 (0) 0 (0) 0 (0) Never Never 36 230 7 N
QueryUnbiasedInterruptTimePrecise 0 (0) 0 (0) 0 (0) Never Never 15 67 5 N
QueryInterruptTimePrecise 0 (0) 0 (0) 0 (0) Never Never 15 67 5 N
GetTickCount64 0 (0) 0 (0) 0 (0) Never Never 15 61 5 N
QueryUnbiasedInterruptTime 0 (0) 0 (0) 0 (0) Never Never 15 67 5 N

S
ta

ll
in

g

[45]
[46]

waitForSingleObject/Ex 1291 (45.03) 242.0 (25.47) 9117 (20.09) 01/10 09/19 9 36 4 N
Sleep/SleepEx 1249 (43.56) 41.0 (4.32) 9135 (20.13) 01/10 09/19 3 10 1 N
SetTimer 842 (29.37) 100.0 (10.53) 5686 (12.53) 01/10 09/19 14 45 4 N
SetWaitableTimer/Ex 75 (2.62) 1.0 (0.11) 195 (0.43) 01/10 09/19 7 46 3 N
CreateTimerQueueTimer 23 (0.8) 2.0 (0.21) 92 (0.2) 04/11 02/19 20 64 6 N
NtDelayExecution 22 (0.77) 37.0 (3.89) 130 (0.29) 07/10 05/19 7 39 3 N
timeSetEvent 33 (1.15) 6.0 (0.63) 84 (0.19) 02/10 08/19 5 22 1 N
icmpSendEcho/2/Ex 6 (0.21) 1.0 (0.11) 42 (0.09) 11/13 07/19 16 54 4 N

H
I [47]

[48]
GetCursorPos 754 (26.3) 99.0 (10.42) 4157 (9.16) 01/10 09/19 10 32 3 N
GetLastInputInfo 49 (1.71) 1.0 (0.11) 305 (0.67) 04/10 09/19 6 26 3 N

R
eg
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y

[49]

NtOpenKey/Ex 193 (10.55) 12.0 (1.26) 781 (3.13) 01/13 09/19 24 178 5 N
NtEnumerateKey 215 (7.5) 2.0 (0.21) 790 (1.74) 01/10 09/19 69 334 18 N
NtQueryValueKey 93 (3.24) 9.0 (0.95) 304 (0.67) 03/10 09/19 16 70 5 N
NtEnumerateValueKey 6 (0.21) 0 (0) 58 (0.13) 07/13 10/18 19 78 3 N

S
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[50]
[40]
[41]
[14]
[44]

NtQuerySystemInformation(PHYSICAL MEMORY INFO) 1342 (46.81) 157.0 (16.53) 10651 (23.47) 01/10 09/19 15 53 4 N
FindWindow 520 (18.14) 51.0 (5.37) 2245 (4.95) 01/10 09/19 10 34 3 N
GetComputerName 403 (14.06) 18.0 (1.9) 2041 (4.5) 01/10 09/19 15 50 2 N
IsDebuggerPresent 304 (10.6) 17.0 (1.79) 1516 (3.34) 01/10 09/19 6 14 1 N
GetAdaptersInfo 165 (5.76) 2.0 (0.21) 1328 (2.93) 01/10 09/19 54 136 13 N
GetDiskFreeSpace/Ex 184 (6.42) 47.0 (4.95) 528 (1.16) 01/10 08/19 7 30 1 N
CheckRemoteDebuggerPresent 124 (4.33) 1 (0.11) 432 (0.95) 01/10 09/19 9 24 2 N
GetAdaptersAddresses 58 (2.02) 4 (0.42) 293 (0.65) 02/11 09/19 46 135 13 N
GlobalMemoryStatusEx 78 (2.72) 26.0 (2.74) 250 (0.55) 11/10 09/19 5 32 1 N
NtQuerySystemInformation(0x23) 28 (0.98) 0 (0) 49 (0.11) 03/10 09/19 10 33 3 N
DeviceIoControl 2 (0.07) 2 (0.21) 7 (0.02) 07/13 11/17 14 62 4 N
PEB→NumProcessors 7 (0.24) 0 (0) 11 (0.02) 03/12 11/17 1 13 0 Y
NtQueryObject after NtCreateDebugObject 0 (0) 0 (0) 0 (0) Never Never 21 93 6 N

WMI [51] ExecQuery 0 (0) 0 (0) 0 (0) Never Never 25 114 10 N
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Table 4: Techniques D/V: Anti-Debugging, Anti-VM, Both. Used by Goodware.
BB is the number of basic blocks, and I is the number of instructions, C is the number
function calls, ASM indicates whether implementing the given technique requires writing
assembly code.

Technique #Families (%) #Goodware (%) #Malware (%) D/V G. First Last BB I C ASM

P
ro
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t

[41]
[37]
[39]

NtSetContextThread(CONTEXT DEBUG REGISTERS) 257 (8.96) 0 (0) 1617 (3.56) 01/10 09/19 13 40 2 N
NtQueryInformationProcess(0x07) 280 (9.77) 4.0 (0.42) 1028 (2.27) 01/10 09/19 13 42 4 N
NtSetInformationThread(0x11) 122 (4.26) 1.0 (0.11) 350 (0.77) 01/10 07/19 14 46 7 N
NtQueryInformationProcess(0x1e) 96 (3.35) 0 (0) 303 (0.67) 01/10 08/19 15 56 6 N
NtQueryInformationProcess(0x1f) 34 (1.19) 0 (0) 115 (0.25) 10/12 08/19 13 41 4 N
NtGetContextThread(CONTEXT DEBUG REGISTERS) 28 (0.98) 0 (0) 46 (0.1) 01/10 03/18 14 42 2 N
DebugActiveProcess on Parent 2 (0.11) 0 (0) 2 (0.01) 10/14 02/16 54 154 21 N
NtCreateThreadEx(HIDE FROM DEBUGGER) 0 (0) 0 (0) 0 (0) Never Never 16 50 6 N

F
il

e
S

y
st

em

[49]

NtOpenFile 613 (21.38) 6.0 (0.63) 3268 (7.2) 01/10 09/19 7 40 2 N
NtQueryAttributesFile 536 (18.7) 14.0 (1.48) 2616 (5.77) 01/10 09/19 7 34 2 N
NtCreateFile 389 (13.57) 6.0 (0.63) 1696 (3.74) 01/10 09/19 9 49 2 N
NtQueryDirectoryFileEx 0 (0) 0 (0) 0 (0) Never Never 81 330 23 N

L
is

t
P

ro
c.

[49]
NtQSI(SYSTEM PROCESS INFO) 649 (22.64) 29.0 (3.06) 4054 (8.93) 01/10 09/19 47 189 22 N
EnumProcesses 122 (4.26) 11.0 (1.16) 393 (0.87) 02/10 12/18 58 201 16 N
GetModuleBaseName 0 (0) 0 (0) 0 (0) Never Never 72 254 25 N

L
is

t
S
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v
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es

[49]

OpenSCManager 222 (7.74) 2.0 (0.21) 1029 (2.27) 01/10 09/19 82 340 27 N
EnumServicesStatus 36 (1.26) 0 (0) 167 (0.37) 01/10 09/19 82 340 27 N
OpenService 6 (0.21) 0 (0) 6 (0.01) 02/19 08/19 39 167 20 N
GetServiceDisplayName 0 (0) 0 (0) 0 (0) Never Never 24 87 10 N
GetServiceKeyName 0 (0) 0 (0) 0 (0) Never Never 24 87 10 N

D
ri

v

[52]
EnumDeviceDrivers 5 (0.17) 0 (0) 21 (0.05) 01/15 08/18 60 198 16 N
GetDeviceDriverBaseName 4 (0.14) 0 (0) 7 (0.02) 01/15 10/16 60 198 16 N

and we never observed the use of WMI.

Keywords Blacklist. Some techniques make access to system resources
such as files, directories, Windows registries, processes, and services. Mal-
ware samples actively search for analysis and monitoring tools to evade detec-
tion. In fact, the presence of such tools is a symptom of being on an analyst’s
machine. Besides keywords related to virtual machines and debuggers, we
inserted keywords relative to these analysis tools (Anti-Analysis). Table 5
shows the blacklist defined for the analysis. The Anti-VM group contains
some keywords related to common Virtual Environments used for the analy-
sis. Tools considered are: Xen Hypervisors, VirtualBox, VMware, Parallels,
Wine, QEMU, Cuckoo, and Bochs. The blacklist has been built selecting
keywords related to VMs, debuggers, and malware analysis tools. Some of
them have been collected from threat reports [40, 53], while we found others
inside our dataset. These resources should not be visible to evasive malware
because it could use them to identify our system. Indeed, we deny access to
all sensible resources.

Packing. Commercial packers often employ anti-debugging techniques. To
explore such a phenomenon and validate our evasion detection techniques, we
ran PEiD [54] on the samples in our dataset. PEiD detected packers in 4,293
samples, with the most common packers being UPX (1713), Nullsoft PiMP
(1609), PECompact (237), ASPack (185). Furthermore, PEiD detected 5
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Figure 2: Percentage of evasive samples by category.

samples packed with (different versions of) Themida, which is known to adopt
anti-debugging techniques. For all the Themida samples, our framework de-
tected Timing, Exception Handling, Traps, and Registry techniques. Inter-
estingly, for versions < 1.8 we identified 3 techniques: GetLocalTime (Tim-
ing), NtClose(INVALID HANDLE) (Exception Handling), ANTI-VM VPCEXT

(Traps). In later versions, we additionally found RDTSC/D (Timing) and
NtOpenKey/Ex (Registry).

It is important to note, the amount of packers that we identified is a lower
bound. Indeed, PEiD is able to identify just common packers, but it does not
run an entropy analysis. This implies that custom and not very widespread
packers were not identified.

Techniques Clusters. We analyzed the use of techniques in malware sam-
ples by computing the Pearson correlation coefficient between each tech-
nique. We then created clusters of techniques whose correlation was above
0.5 (highly correlated). Table 6 show the cluster of techniques that are often
employed in the same malware samples.

RQ1. The vast majority of malicious samples adopt at least one evasive
techinque, with Timing and Stalling being the most adopted categories
of techniques. Malware families also look for artifact keywords, with
“vbox”, “sandbox”, and “virtualbox” being the most used keywords.
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Table 5: Blacklist of functions accessing
OS resources

Anti-VM

vbox, virtualbox, vmware, vmx, vmsrvc , prl, xen,
parallels, bochs, wine, qemu, vmusrvc , innotek, vmhgfs

Anti-Debugging

ollydbg, debugger, debug, softice, x32dbg
windbg, immunity debugger, dbgviewclass

Anti-Analysis

wireshark, tcpview, autoruns, regmon, procexp, hookexplorer,
sysinspector, petools, dumppcap, python, malware, virus,
sample, anyprotect, process viewer, bitdefender, seguridad,
charles, dll injector, fiddler, file monitor, filemon
obsidiangui, processhacker, procmon, progman regmon,
rock debugger, rootkitrevealer, socketsniff, pe explorer,
process explorer, process hacker, process heap viewer,
process monitor, program manager, packet analyzer,
registry editor, resource hacker, security task manager,
switchsniffer, tcpview, wireshark, windows file protection,
winhex, taskmgr, trw2000, remote process viewer,
httpanalyzer, mcafee, tidawindow, smartsniff, kaspersky,
norton, panda, webroot, sophos, avira, trendmicro, comodo,
avira, bitdefender, clamav, symantec, avast, nod32, drweb
fortinet, g data, systracer, regshot, windows task manager

Table 6: Techniques that are employed
in the same malware samples.

NtQuerySystemInformation(PHYSICAL MEMORY INFO)

GetTickCount, RDTSC/D, CPUID(eax=0x00000001),
waitForSingleObject/Ex QueryPerformanceCounter,
SetUnhandledExceptionFilter, Sleep/SleepEx

SGDT, SLDT, SIDT

IN, VPCEXT

NtQueryInformationProcess(0x1e - 0x1f - 0x7), POP SS

CheckRemoteDebuggerPresent, NtSetInformationThread(0x11)

GetModuleName, EnumProcesses

STR, POPFD

Table 7: Usage of blacklisted keyword
per families in our dataset

Family keyword #

neshta

sandbox 444
virtualbox 443
xen, sample 442

python 424
debug 353
vbox 226

malware 203
outbrowse vbox 302

installmonster virtualbox 129
sivis debugger 127

hotbar debug 118
simda wireshark, virtualbox, debug, vbox 85

5.3. Families & Evasive Techniques

Intuitively, the set of evasive techniques used and the malware families
could be correlated. This hypothesis is raised from the way malware sam-
ples are developed. In fact, malware samples are usually built by tools. The
production chain of malware has been proved to be well distinct. Malware
authors usually develop builders that can be easily used to generate new
samples. The malware authors benefit from the selling of the build because
the criminals who distribute malware are not necessarily the ones who wrote
it or even able to develop a sophisticated malware program. Evasive tech-
niques are usually an additional feature of malware sample builders. We
leveraged a machine learning algorithm of pattern identification to evaluate
this correlation between the evasive techniques and malware families. We
set up a RandomForest Classifier; the input of the classifier is an array of
boolean variables representing the use of each technique inside a sample; the
output of the classifier is the family label. We built 123 classifiers for 123
families (all families with at least 50 samples). The output of each classifier is
trained with 3-fold cross-validation using stratified sampling. For each clas-
sifier, we computed the f1-score, a metric to evaluate how well the classifier
is performing, taking all the confusion matrix into account. In Figure 3, we
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Figure 3: F1-score for RandomForestClassi-
fier; y-axis shows the number of correctly
classified family, x-axis is ordered by f1-
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can appreciate the result of this experiment. While clearly, there are families
with a solid correlation, the values of the F1-score drop quickly. This implies
that from our analysis, 16 families can be recognized from the combination
of evasive techniques employed. Indeed, F1-score is not enough to evaluate
the performance of a classifier. An F1-score greater than 0.5 can still be
produced by a low precision and recall. Figure 4 show more measurement
about the performance of such classifiers. From Figure 4 we can see that two
of those classifiers (imali, relevantknowledge) have low precision and recall.

Malware samples are often packed. Some packers, like obsidium, can
implement evasion techniques themselves. Thus, we ran an additional ex-
periment to identify if there is any correlation between the packer that we
identified in our dataset and the techniques. The experiment setup is similar
to the previous one. In this case, instead of building a classifier for the fam-
ily, we built a classifier for packers. We lowered the minimum threshold of
samples to 20 to include more packers. In total, we classified 33 packers; the
results are shown in Figure 5. Only ‘PEtite’ showed a significant correlation
between used techniques and the packer (F1: 0.87, Recall: 1.0, Precision:
0.82).

Finally, while we considered tf-idf as techniques to prove correlation
among techniques and families, we chose Random Forest to study further
if a detector with good performance could be built for some of the families
and packers.
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RQ2. There is a consistent number of malware families (46) that are
characterized by the selection of evasive techniques they employ.

5.4. Longitudinal Analysis

Our dataset has been collected evenly spread across ten years (Section 5.1).
This dataset empowered us to perform analysis and identify changing trends
during these years.

Interestingly, Figure 6 shows that there was a little increment (∼ 12%)
in the use of evasive techniques during the last ten years. In comparison,
the use of common packers stayed constant. The detection of all techniques
starts from 67.8% in 2010 and slightly increases to 80% during the last years.
This result is coherent with old works[27, 30]. Although, in Section 5.6, we
discussed how several techniques could be confused with normal program
behavior.

Moreover, we analyzed the intricacy of malware during the last ten years.
Figure 7 shows the maximum number of evasion techniques that were used
by a single sample. It is interesting to notice the rising of the number of
techniques until 2017. However, we can see a decrease in the last two years.

Furthermore, we analyzed the targets of evasive attempts. Indeed, our
system can discern when the malware is evading a debugger or a virtual
machine. In Figure 8 we show four categories of targets.

We exploited the categorization in Tables 3-4. However, for techniques
used for both Virtual Machines and Debuggers, we relied on the blacklist de-
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scribed in Section 5.2. There are few techniques categories (Stalling, Timing,
Process Enumeration) that cannot be assigned to either of the categories. We
named these techniques Common. Figure 9 shows how the type of techniques
used by malware authors shifted during the last 10 years.

Our blacklist includes, besides virtual machine and debugger, generic
analysis tools keywords. In fact, finding classical analysis tools is a clue
that the machine is used for analysis. The Anti-Analysis peak in 2018 is
caused by a campaign of the neshta family that scans the disk searching for
files to infect. In 2015 instead, the predominant Anti-Analysis families were
simbda looking for wireshark and eorezo searching for antivirus software.
Keywords used for most common families are shown in Table 7.

Another interesting aspect is the timeline of the techniques: lots of them
have been observed during the whole timeframe considered, which means
that their first appearance may go back to years before the ones considered
in this work and that malware authors will probably continue to use them in
the future. Figure 10 shows the period of utilization of each technique. We
restricted the graph to techniques that are predominantly found in malware
(See Section 5.6). The graph is based on the observation of running samples,
and the dates refer to the first appearance of the corresponding sample on
Virustotal. Several techniques start at the beginning of 2010. Very likely,
those techniques have been used before 2010. The same reasoning can ap-
ply to the ending: the closer the ending date is to the end of our dataset
(September 2019) more likely it is that the technique is going to be used
in the future. We plotted each observation — of an evasive technique —
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as a vertical line on the corresponding bar. We can notice two patterns:
(1) many techniques shows cluster in small periods. This can be attributed
to active malware campaigns, either because analysts submit newly found
samples or because malware authors test their samples before release. (2)
Some techniques are more used than others. We can notice like both INT

2D and IsDebuggerPresent are really old, but the latter is definitely more
used. Indeed, IsDebuggerPresent is documented by Microsoft API docu-
mentation and technically easier to implement; these may have contributed
to its popularity as an evasion technique.

Furthermore, we can notice techniques that are not used anymore, like
PEB->NumProcessors that checks the number of cores and SIDT that exploits
a side-effect of virtualization techniques in old CPUs. Those techniques are
not effective anymore since the rise of the number of cores in modern pro-
cessors allowed virtual machines to use more than a single core and modern
CPUs support for virtualization removed some of the side-effects.
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RQ3. Our longitudinal study highlights that evasive techniques were
already quite common back in 2010, with almost 70% of malware samples
employing evasive behaviors, and their adoption slightly increased over
the past ten years, although not significantly. Moreover, we can see
malware authors drop techniques that are not effective anymore.

5.5. Evasion vs. Community
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Figure 11: POP SS detection timeline. The blue line is the number of samples that adopt
POP SS. The red vertical line is the first public appearance of the technique, the orange
lines any sequent appearance.

Evasive techniques have been reported for years in research papers, in-
dustrial conferences, and specialized forums. In this section, we conduct a
preliminary study on the impact of the adoption of malware evasion tech-
niques on the security community and vice versa. In particular, we aim
at estimating (1) the influence of the release of information about evasive
malware techniques on their adoption and (2) the time required by the com-
munity to report a new evasive technique with respect to its first appearance
in our dataset.

We crawled the Internet for information related to the evasive techniques
under analysis to estimate the community awareness on malware evasiveness.
We focused on academic and industrial works scraping paper, blog posts, and
technical reports. We searched for the keywords related to the techniques
listed in Table 3 and Table 4. Then, we filtered the results associated with
the concept of malware or evasion (e.g., “IsDebuggerPresent” AND (malware
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OR evasive))1. We further post-processed the gathered data by manually an-
alyzing and filtering out non-relevant results (i.e., generic reports of dynamic
analyses with no explicit references to evasive behaviors). Coherently with
the longitudinal study conducted in this paper, we focused on the period
from 2010 to 2019. Additionally, we crawled the same information for the
period before 2010 to study the impact of the security community on already
known techniques. We collected a total of 394 sources2. Then, we compare
each evasion technique’s quarterly trends (i.e., the number of sample imple-
menting it) with the harvested information. Despite this study provides only
an estimation of the influence of the community on the adoption of evasive
techniques – and vice versa – since it might be biased by both the dataset
under analysis and the (publicly available) sources, we deem that it provides
insights for future research on the topic. In fact, in the period under analysis,
we observe an increasing trend in the number of resources related to mal-
ware evasiveness: between 2010 and 2015, we have an average of 3 reports
per year, while between 2016 and 2019, this number doubled, demonstrat-
ing the higher community interest and awareness of the problem, passing
the years. From the 92 evasive techniques under analysis, 50 were already
known before 2010, while 21 are disclosed by the community between 2010
and 2020. On average, techniques become public after 4.4 years. The fastest
disclosure belongs to the ’EnumDeviceDrivers’ technique, which appears in
malware samples in the same quarter of the talk [55]. Instead, the slowest
disclosure— after 7 years—belongs to ’VPCEXT’ [56].

By comparing the quarterly trends of each evasion technique with the
harvested information, as shown in Figure 11 for the POP SS technique, it
is possible to observe an evident influence between them. There is a high
correlation between the release of information about evasive techniques and
their implementation in malware. In particular, if the technique is already
widely adopted/known, after the release of new information, we notice a
slight and temporary decrease in their usage in the subsequent years. On
the contrary, if the technique is scarcely used/known, we observe a swift
increase in its adoption in the following years after the release of reports.
As expected, once a technique becomes widely used, the number of related

1To limit the bias of search engines’ personalized search and geolocalization, we worked
in “Incognito mode”.

2The gathered data is available at https://github.com/necst/brioscia
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reports significantly increases.

RQ4. Our analysis highlights a correlation between the adoption of
malware evasive techniques and the information provided by the security
community: if from one side, we observed that the release of security
reports on evasive techniques corresponds to an increase of their adoption
in the short term, on the other, it tunes down their spread on the long
term.

5.6. Malware vs. Goodware

While less common, goodware also employs evasion techniques to prevent
reversing and protect intellectual property (e.g., games, Spotify). Moreover,
some of the evasive techniques that we monitor may be based on side-effects
and operations that are not intrinsically malicious, and that can be used both
for evasive and non-evasive behaviors. For instance, Operamail monitors the
list of running processes to look for another instance of itself, and it does not
run if another instance is already running.

In order to better characterize such techniques, we collected a dataset
of benign applications. We discarded all those binaries that were positively
detected by any anti-malware used by VirusTotal. The goal is to distinguish
techniques that are used exclusively for evasion purposes from the ones that
are, instead, often used by legitimate programs for benign behaviors. For
instance, CPUID(eax=0x1) is an instruction that Microsoft compiler adds at
the beginning of any binary. While this instruction can be used to fingerprint
the CPU and be used to understand if the program is executed inside a virtual
machine, it can also be used to understand if a library needs to use a software
implementation of floating-point arithmetics or it can exploit the hardware
FPU.

We then analyzed these applications to identify evasive patterns. Fig-
ure 12 shows the number of evasive techniques adopted by legitimate pro-
grams in our goodware dataset (30). We can see that some evasive pat-
terns are present in many goodware programs. Sometimes, goodware im-
plement anti-analysis techniques to protect Intellectual Property. For this
reason, we manually analyzed the use of 18 techniques. We choose to ana-
lyze the techniques that are less frequently used in benign programs. One
(IsDebuggerPresent) of these eighteen techniques were used as an evasion
technique to identify the presence of a debugger. The remaining 17 were not
used as an evasion mechanism. We classified each technique based on our
goodware analysis:
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Figure 12: Appearance of evasive techniques in Goodware dataset. × markers identify
unreliable techniques because of their massive presence in goodware programs. 4 markers
identify techniques that we have manually analyzed in goodware programs to determine
if the technique is used for evasion.

Used by Malware. It is the evasive behavior never observed inside good-
ware samples, or we manually verified that it is used as an evasion mechanism
in goodware samples.

Used by Goodware. It is the evasive behavior observed in more than 1%
of our goodware samples, or we manually verified that there were not used
as an evasive behavior.

If we consider this division of techniques and revisit some of the results
we have gotten so far, we can notice some differences. Indeed, looking at
Figure 13, we can see that if we consider only malware-related techniques,
the percentages of evasive families drop from 60-85% to 19-30%. While the
use of techniques used by goodware is increasing, the use of techniques that
are explicitly only in malware stays constant. Similarly, looking at Figure 7,
if we consider all techniques, there is an increase in usage until 2017. If we
take into account only techniques found exclusively in malware, the trend
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Figure 13: Ratio of evasive families quarterly aggregated.

shows a constant decrease in the number of techniques used in the same
sample. We also remark that techniques never detected in benign programs
are the ones used explicitly for malicious purposes. Even though we validate
our benign dataset against VirusTotal to minimize the presence of trojan in
our benign dataset, it is possible that some Trojan was not caught by our
validation. The lower bound results may be influenced by those trojans.

Techniques Clusters Similarly, for what we did for malware techniques, we
computed the Pearson correlation among techniques that are implemented
in the same goodware. Techniques with correlation > 0.5 are shown in Ta-
ble 8. Interestingly the first group shares all but one (GetCursorPosition)
technique with the first group of malware samples (Table 6). Besides that,
all other clusters are different from the ones seen for malware samples.

RQ5. Legitimate programs adopt evasive techniques, even if this phe-
nomenon is significantly less common. In particular, only a few tech-
niques are commonly adopted, suggesting that such techniques are not
mainly used for true evasive purposes.

6. Limitations

Reliable detection of evasive techniques is a complex engineering problem,
as a “perfect” solution often does not exist, and the adversarial context
exacerbates the issue. We acknowledge that our analysis framework itself
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Table 8: Techniques that are employed in the same goodware sample.

GetCursorPosition, RDTSC/D,
GetTickCount, SetUnhandledExceptionFilter,
NtQuerySystemInformation(PHYSICAL MEMORY INFO)

NtQuerySystemInformation(SYSTEM PROCESS INFORMATION),
GetAdaptersAddresses, EnumProcesses, timeGetTime

IsDebuggerPresent, NtQueryValueKey,
NtOpenKey/Ex, GetDiskFreeSpace

NtCreateFile, NtOpenFile

NtDelayExecution, Sleep/SleepEx

NtQuerySystemTime, GetComputerName,
NtClose(INVALID HANDLE)

OutputDebugString, PEB→IsDebugged

can be evaded: We measure the usage of the 92 (known) techniques that our
framework supports, but of course, samples may employ unknown techniques
that we are unable to track.

Our choice of selecting samples detected by at least 35 AV engines al-
lows us to exclude false positives (i.e., legitimate programs that we would
consider malicious). However, as a side effect, our dataset may not include
true malicious samples that are not well detected by the majority of AV en-
gines. Unfortunately, this is an inevitable trade-off since manual verification
of each sample is not feasible when performing large-scale studies such as
ours. We plan to investigate evasive behaviors in less detected samples in
future research.

Similarly, to avoid malicious samples into the benign dataset, we filtered
out any binary that was detected as positive by an AV on VirusTotal. Unfor-
tunately, we cannot be certain that our dataset does not contain any Trojan.

Coherently with the research aim to perform a longitudinal analysis, dur-
ing data collection, we cared about temporal distribution of the number of
samples trying to sample the same amount of binaries each month. Of course,
this affects the distribution of samples per family. As we can see in Table 2,
even in the top 20 most common families in our dataset, there is a significant
difference in the number of samples. In fact, the type of families in a month
depends on the currently active malware campaigns and samples submitted
to VT. Moreover, this also depends on the type of family itself. In fact, if the
malware sample is polymorphic or metamorphic, the number of samples is
very high. Instead, for non-morphic malware, we see only one sample. This
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implies that when we look at results by the number of samples, the results
may be affected by the most prominent families. For these reasons, we also
provide, when possible, results based on the number of families.

Some technical limitations of our current implementation stem from the
use of a DBI framework for the analyzer. The stability of the injection and
the performance impact of the DBI tool are significant challenges. Also, the
artifacts induced by the DBI tool itself could be exploited by new evasive
techniques [18]. This means that our results might underestimate malware
evasiveness.

Moreover, any evasion attempt that is performed after 5 minutes is lost by
our framework. If we consider the most evasive families (>95%) and we as-
sume that those samples were misclassified by our framework, our framework
lost evasion techniques for at least 121 samples. Although, accordingly with
Küchler et al. [35], most malware samples execute within 2 minutes time-
frame. This implies that the execution time should not have a significant
effect on our results.

The techniques we monitor are indicators of potential evasion attempts,
but they do not capture the intention of malware authors. We can only
speculate why malware authors are adopting the techniques that we identify
in our study.

7. Discussion and Future Directions

In this paper, we shed light on the evasive behaviors employed by modern
Windows malware by systematically documenting and classifying 92 evasion
techniques and by measuring their adoption over the past 10 years.

From a longitudinal, historical perspective, our results show that, over-
all, the evasion rate had a small increase over the years, starting very high
since 2010 (when it was already almost 70%) and reaching 80% at the end
of 2019. We also documented a decrease in the intricacy of malicious tech-
niques over the last years, with Timing techniques increasingly becoming
their first choice. We also found an interesting relationship with publica-
tions of techniques by the research and anti-malware community, with an
immediate increase in adoption, followed by a steeper decline.

While we can only speculate the reason behind the malware authors’
choices, we believe that the main reason for the observed increase in the
adoption of evasive behaviors is the fact that the studied techniques are
still quite effective for the cybercriminals’ purposes (i.e., evading dynamic
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analysis and delaying the characterization of their samples). In spite of the
considerable amount of research proposed in the past 10 years, mitigation of
evasive malware in the real world is still a problem. While, on the one hand,
designing an “invisible” dynamic analysis environment is an extremely chal-
lenging task, which can be linked to the halting problem, on the other hand,
we believe that the security community can and should research novel and
practical solutions to mitigate this problem further. In particular, while on-
line sandboxes nowadays implement many anti-evasion strategies, not many
endpoint anti-malware solutions employ dynamic-analysis approaches [10].
Those that do adopt lightweight solutions are, unfortunately, incompatible
with the resource-hungry anti-evasion approaches currently available. To
overcome this, vendors often send suspicious executables to cloud-based en-
gines for more complex analyses, but this leaves open a window of time for
the execution of malicious payloads on endpoints, which in the case of ran-
somware may be enough to make the subsequent cloud-enabled detection
pointless. Thus, evasive behaviors allow malware authors to “delay” the
identification of their samples to a point when they already caused substan-
tial damage. We believe that future research should focus on re-designing
approaches that mitigate evasive malware to make such solutions practical
and efficient so that they can be deployed inside emulators that run directly
on the endpoints, allowing for faster detection.

Our study also found that malware authors move from old techniques to
new ones, pursuing their goal to evade a dynamic analysis system. Therefore,
it is essential for forward-looking anti-evasion solutions to be able to capture
the fundamental properties of evasive behavior and to adapt to emerging
techniques quickly.

Moreover, our analysis framework—similarly to the previously proposed
anti-evasion tools—currently does not identify the adoption of logic bombs
for evasion purposes [57], which we plan to study in future work.

An additionally interesting future work is the analysis of evasive tech-
niques targeting the 64-bit x86 architecture. Our analysis in this paper is
based on binaries using the 32-bit x86 instruction set architecture because it
is the architecture prevalently used by malware authors nowadays. However,
there are a few differences in its 64-bit counterpart that may change how
some of the evasive techniques work.

Finally, no previous study focused on evaluating the effectiveness of the
currently deployed anti-evasion solutions. In fact, some existing and old
techniques are currently still being adopted, which suggests that they are
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still effective. We believe that future work should research novel metrics and
principled approaches to test and compare sandboxes and instrumentation
frameworks, ultimately assessing and quantifying their fingerprintability and
robustness to evasiveness.

8. Conclusions

In this paper, we systematically documented 92 evasion techniques (to
our knowledge, the broadest collection so far in literature) adopted by mod-
ern Windows malware and created a meaningful taxonomy of them. We
implemented and released a DBI-based tool to analyze Windows executables
and identify whether they employ any of such evasive techniques. Leverag-
ing our analysis tool and a dataset of 45,375 malware samples from 2,867
different families observed in the wild over a span of 10 years, we performed
a measurement of the evasion phenomenon over time. We showed that the
adoption of evasive techniques slightly increased over the years and is nowa-
days common in modern malware and that malware authors update their
techniques to evade analysis systems. From a non-temporal perspective, we
found a high correlation between sets of malware families and associated eva-
sion techniques. We also identified 15 published techniques that do not seem
to be prevalent in our dataset: we will investigate this result more in-depth
in future extensions of this work. Finally, we analyzed the prevalence of
(some) evasive behaviors in legitimate executables by running a comparative
analysis on a dataset of goodware samples. This is the first work that shows
a large collection of evasive behaviors and a quantitative analysis of their
distribution over time. We believe it provides interesting insights to explore
other methodologies to detect novel classes of evasive behaviors.
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Appendix A. Evasive Techniques: Details

Appendix A.1. Memory Fingerprinting

A debugger usually leaves some traces in the memory of the debugged pro-
cess. We consider some memory locations that are interesting for Anti-Debug
checks. Some of them are inside the Process Environment Block (PEB) or the
KUSER SHARED3, which are Windows data structures inside every running pro-
cess. Our Memory Controller module handles all the memory accesses. We
consider the access evasive only if the load instruction is executed inside the
main binary code section to filter relevant results. In particular, we consider
the following memory accesses: PEB→IsDebugged is a byte inside the PEB,
checked by IsDebuggerPresent [37, 26], which is 1 if the process is inside
a local debugger and 0 otherwise; PEB→NtGlobalFlag is a byte inside the
PEB at offset 0x68 and it is 0 when no debugger is in place and 0x70 other-
wise [37]; PEB→Heap→Flags is a byte inside the Process Heap (offset 0x18

from PEB) and located at offset 0x40 from the Process Heap, which is al-
ways different from 2, when under a debugger [37]; PEB→Heap→ForceFlags

is a byte inside the Process Heap (offset 0x18 from PEB) and located at
offset 0x44 from the Process Heap, which is always different from zero when
under a debugger [37]; KUSER SHARED→KdDebuggerEnabled is a byte inside
KUSER SHARED, which is 1 when a kernel debugger is detected at boot time,
0 otherwise.

Appendix A.2. Error/Exception Handling

Malware samples can exploit exceptions and errors to identify the pres-
ence of a debugger. Indeed, a malware sample sets a custom handler, then
throws an exception, and it executes its malicious activities inside the un-
handled handler. There are several ways to implements such behavior [39].
Debuggers usually catch CTRL+C exception using their own handles (CTRL
Exception Handling). Therefore, a debugger can be detected throwing
a CTRL+C exception after having set a handler for the exception. To detect
this behavior, our tool checks if a SetControlCtrlHandler is called before
throwing this exception using GenerateConsoleCtrlEvent. Similarly, Se-
tUnhandledExceptionFilter is used to set the last handler in the context of

3KUSER SHARED is a memory region that contains data shared between kernel and
userspace [38].
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the Structured Exception Handling (SEH) mechanism in Windows. The Un-
handled Exception Handler is used to perform the last recovery action before
killing the process. Windows uses the standard Windows Frame as the last
exception handler. However, debuggers ignore this exception to keep pro-
cesses running even when an exception occurs. Moreover, a malware sample
can exploit the close of an invalid Handle (NtClose(INVALID HANDLE)) that
throws the exception with code (0xc0000008). Slightly different is the use
of OutputDebugString. This technique does not work on modern Windows
systems; however, it was used in the past. It consists of a call to Output-

DebugString, which sets an error if a debug is not present. It is possible
to recover information about the error using GetLastError function. In the
past, OutputDebugString was used to crash debuggers by using a %s format
string as an argument. Our tool detects any OutputDebugString call during
the execution.

Appendix A.3. CPU Fingerprinting

CPUID is an x86 instruction used to retrieve information about the run-
ning CPU. It is commonly used to retrieve information about the CPU:
supported extensions, CPU brand, Floating-Point unit and cache descrip-
tion, CPU serial number, and other information. This instruction is gen-
erally used by computation-intensive programs that need to know, for ex-
ample, if SSE and floating-point operations are supported natively. There
are two common ways to detect a hypervisor using this instruction [40]:
CPUID(EAX=0x00000001) returns information about the presence of a Hyper-
visor. Instead, CPUID(EAX=0x40000000) returns the brand of the hypervisor,
such as WMware or VBOXVBOX.

IN is a privileged x86 instruction used to communicate with peripherals and
takes as arguments EAX and an immediate or EAX and EDX. Inside some
hypervisors, the instruction can be executed in user-mode with some specific
port values (EDX) to communicate with the hypervisor, which sets some
special I/O ports available to guests. VMware supports this feature, indeed,
IN(EAX=’VMXh’, EDX=’VX’) results into EBX=’VMXh’ if executed under a
VMware Hypervisor, thus this method actively exploited by evasive malware
to determine if they are under a VM [40].
SMSW has an undocumented bits for the returned value. Some VMware ver-

sions have a default value for these undocumented bits [41].
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Appendix A.4. Table Descriptors

These techniques find discrepancies between OS descriptor tables ad-
dresses in order to detect the hypervisor presence.

STR returns the pointer to the Task State Segment(TSS) of the current task.
Its value is fixed on single-core physical machines but changes in virtual
machines. Moreover, SIDT is an instruction used to retrieve the Interrupt
Descriptor Table (IDT). Old VMware did not emulate this instruction cor-
rectly, so the value of the Hypervisor IDT could be leaked. In particular, if
a single CPU machine is in place and a VMware Hypervisor is present, it
is possible to notice two different IDT addresses for the same CPU. These
methods do not work reliably on multi-CPU systems [41].

SGDT is used to retrieve the Global Descriptor Table (GDT), which should
be unique; however, while running on VMware Hypervisor, the value keeps
changing. The difference can be detected querying multiple times SGDT [41].
Instead, SLDT is used to retrieve the Local Descriptor Table (LDT). This value
is always zero on physical Windows machines because the Windows OS never
uses it. Although, while running on VMware, LDT value changes [41].

Appendix A.5. Traps

Several x86 instructions can be used to leak the presence of a hypervisor,
emulator, or debugger [39]. Similarly, to Exception Handling (see Section
Appendix A.2) we can exploit INT 3 that throws a BREAKPOINT EXCEPTION

that is used by debuggers to set breakpoints inside a program, or INT 1 that
is used for is a SINGLE STEP exception [30]. ICEBP (opcode 0xf1) is an undoc-
umented x86 instruction that trigger SINGLE STEP exception [41]. Another
way to trigger exception is to set the trap flag inside EEFLAGS register. In fact,
it possible to pop a new value for EEFLAGS using POPF and POPFD instruc-
tions [37]. Other instructions like POP SS, instead, tampers with the step
execution of debuggers skipping the next instruction [37]. INT 2D throws a
BREAKPOINT EXCEPTION, and in some debugger (OllyDBG), this instruction
will skip the one byte causing a different instruction to be executed.

VPCEXT, instead, is an instruction that can be executed only by Virtual PC
Emulator, and it throws an exception if executed outside a Virtual PC. Some
malware samples execute VPCEXT and then check the value of EBX to un-
derstand if Virtual PC detection succeeded [43]. Virtual PC is right now
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an abandoned project4(last version released in 2011). Thus this technique is
unreliable on modern systems. For all these techniques, our system detects
when corresponding instruction is executed.

Appendix A.6. Timing

It is possible to exploit accurate timestamps to identify analysis systems.
For example, discrepancies in the execution time of instructions are clear
signs of a virtual environment. However, these techniques can also be used
to detect debuggers and DBI tools [18]. Indeed, any operation that slows
down the execution of the sample can be detected.

RDTSC is an x86 instruction used to retrieve the number of clock cycles since
reset. It is a 64-bit value used for performance measurements. In order to
identify the presence of a Hypervisor, it is sufficient to execute VM Exit
instructions such as CPUID while measuring the timing with RDTSC. We can
detect the Virtual Machine by looking at the number of cycles needed to
execute such instructions. RDTSC can also be used to measure the time elapsed
between two blocks of code for debuggers or DBI detection [41].

We implemented a system to bypass our VM detection by saving the first
RDTSC return value. All the subsequent calls are set to a small increment
with respect to the previously saved value.

There is a series of Windows API calls that can be used for timing de-
tection: QueryPerformanceCounter and NtQueryPerformanceCounter are
unbiased versions of RDTSC that take into account multiprocessors and fre-
quency changes across CPUs; timeGetTime, timeGetSystemTime, and Get-

SystemTimes return the time since system boot; NtQuerySystemTime and
GetLocalTime return the current date in different formats; GetTickCount,
GetTickCount64, and NtGetTickCount return the number of milliseconds
since boot; QueryInterruptTime, QueryInterruptTimePrecise, QueryUn-
biasedInterruptTime, and QueryUnbiasedInterruptTimePrecise return
the number of 100 nanoseconds units since system boot using clock inter-
rupts. All these functions are hooked and logged by our detection system.
However, to bypass the detection of an analysis environment, all the internal
Windows timers should be set properly.

GetTickCount and timeGetTime can be used to detect how much time
the system has been up, and some malware sample uses them to detect the

4https://www.microsoft.com/it-it/download/details.aspx?id=3702
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uptime of the whole system. Indeed, a small uptime is considered an indica-
tion of Sandbox [44]. Initially, our detection system sets timing variables to
a value compatible with 7.7 hours of uptime and increases their value by a
small constant for any subsequent timing information retrieval.

Timing evasion techniques usually involve the repeated measurement of
performance counters and ticks to check if a significant amount of time is
spent on some instructions. If the delta between two measurements is less
than a threshold, the system is deemed clean. Setting always a small differ-
ence between measurements bypasses all the possible timing checks.

In order to avoid the manual implementation for all the timing func-
tions, we applied a bypass based on monitoring access to all the timing
fields contained in KUSER SHARED: TickCountQuad contains the value of ms
elapsed since the system boot. This value is used to to produce GetTick-

Count, GetTickCount64 , and NtGetTickCount. The initial value is set to
u 28000000 ticks (u 7.7 hours); InterruptTime is the field accessed by
timeGetTime and QueryInterruptTime and it is a more precise way to get
the ticks of the system. This field is initialized with the value of TickCoun-
tQuad and incremented with a higher frequency: SystemTime is the field
containing the value of the system date with millisecond precision. Each
time any of the previous timing fields are accessed, our tool adds a tiny
constant to increase the timer. Using this solution, a malware sample that
continuously accesses timing information cannot reliably tell the difference
between physical and virtual environments.

Appendix A.7. Stalling

Malware Sandboxes are designed to detonate malware inside the Virtual
Environment in order to collect system events. However, this activity is
limited by the time assigned to the analysis. A reasonable time assigned
by Sandboxes ranges from 3 minutes to 10 minutes,; thus, a safe choice is to
start malicious actions after 10 minutes in order to fool the detection system.
This behavior is extremely stealthy. Understanding if a sample is stalling is
an undecidable problem. A malware sample does not stall only using sleeping
functions offered by the OS, but also performing useless arithmetic opera-
tions, or system calls [46, 45]. Even worse is the case of malware that contains
time bombs that run only at specific dates or timestamps. Our system is lim-
ited, focusing only on the functions provided by Windows. The main sleeping
function is Sleep, which stalls the execution of a program. Sleep internally
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calls SleepEx which in turn executes the syscall NtDelayExecution. More-
over, we can detect the use of: waitForSingleObject/Ex, used to wait until
an event is signaled. However, it is possible to set a maximum waiting time,
which causes an infinite stalling if the signal is never sent; SetTimer, time-
SetEvent, SetWaitableTimer, used to set the execution of a function after
the timeframe is elapsed; CreateTimerQueueTimer creates a timer inside a
Queue of timers. When the timer expires a callback function is executed;
IcmpSendEcho/2/Ex is used to wait for the response of ICMP echo responses
with a timeout. If the server never replies, the function will stall until the
timer expires.

We set to 0 the sleeping time defined as a parameter of the aforemen-
tioned functions. This countermeasure is applied if the function is invoked
by the text segment of the malware executable because most of the sleeping
functions such as waitForSingleObject and SetTimer are used for synchro-
nization purposes by external libraries whose functionalities could be broken
with a null value.

Appendix A.8. Human Interaction

The idea of this set of techniques is to detect if a human is using the in-
fected machine. A Virtual Environment can be detected checking the mouse
cursor position over time using GetCursorPos API call (Cursor Position).
If the position of the cursor never changes, a malware sample can reliably
say that it is running inside a Sandbox [47]. Our tool detects this API call
and randomizes the coordinates to bypass the evasive behavior.

Another way to detect the presence of the user on the system is to retrieve
the timestamp of the last input. This method has been detected on custom
Delphi packers [48]. The last input is measured across multiple Human In-
terface Devices (HID) such as mouses and keyboard. If the timestamp is
old, the malware can say that no user is present on the system. The com-
mon Windows API call to get this information is GetLastInputInfo which
returns the timestamp of the last input action in system ticks. Each tick is
roughly 1 ms and the timestamp is zero when the system boots. Our tool logs
the call and sets the returned value of GetLastInputinfo to the following
value: LastInput = CurrentT icks() + rand()%1000

Appendix A.9. Registry

The Windows Registry is a container of valuable system information. It
contains interesting values such as Services available, Programs Installed and
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System information that can also be retrieved using Windows API calls. The
Registry is a hierarchical database where each key stores some values. Each
value has some typed data associated that can be queried using Windows
Registry Editor or programmatically using Windows Libraries. The type
of detection is similar to the one described for File System Artifacts [49].
Indeed, we use this blacklist to log and then block suspicious Registry Keys.
In particular, we focus on the most reliable techniques to retrieve Registry
information.

NtOpenKey/Ex The only two syscalls available to open a registry key. The
existence of a VM/Debugger related key is a good indicator of a malware
analysis system. There are some VirtualBox specific Keys that are never
present on physical machines. Our tool allows the generation of a valid
HANDLE if the full key path does not contain blacklisted keywords, otherwise
STATUS OBJECT NAME NOT FOUND is returned. An example of blacklisted key
is: HKLM\HARDWARE\ACPI\DSDT\VBOX .

NtQueryValueKey It takes the HANDLE of an open key and a value name
and returns the data stored in the registry. If the value name contains some
blacklisted keywords, the result is a non-existing value error. If the data
stored contains a blacklisted keyword, the whole data is replaced with a
random string. This implementation takes into account String (REG SZ, REG -

EXPAND SZ) and MultiStrings (REG MULTI SZ) values.

NtEnumerateKey It enumerates all the subkeys of a key. Again, if some
subkey should be blacklisted, its name is replaced with random values to
hide its presence.

NtEnumerateValueKey It is used to enumerate all the values and data con-
tained in a key. In this case, the same countermeasure of NtEnumerateKey is
applied, taking into account REG SZ, REG EXPAND SZ, REG MULTI SZ values.

Appendix A.10. System Environment

Physical Memory Information. Malware can detect analysis VMs by
checking memory size information, because they are usually configured to
take few GB of memory. An evasive behavior consists in checking if the physi-
cal memory size is significantly less than 4 GB [53]. There are two ways to ob-
tain this information: First, using NtQuerySystemInformation(PHYSICAL -

MEMORY INFO), an undocumented syscall. Second, using GlobalMemorySta-

tusEx,a Windows API call that returns a documented and detailed report
on the memory status, including free memory and total memory size.

45



Disk Space Information. The size of the disk installed in the system
is a good indicator of VMs, because most VMs do not take more than 80
GB [53]. There are three documented ways to obtain information about the
disk size. GetDiskFreeSpaceEx/A/W returns the total space on disk and free
bytes; GetDiskFreeSpace/A/W returns the same information and additional
specifics on Sectors and Clusters sizes; DeviceIoControl(IOCTL DISK GET -

LENGTH INFO) is used to send control codes to device drivers. We use IOCTL -

DISK GET LENGTH INFO to ask for Disk Information.
The detection is done using the Windows API Hooker module, and the

countermeasures applies a Disk Space Multiplier on the total size of the disk.
We set this multiplier to 5, e.g., if the analysis VM has 30 GB, the API call
will return 150 GB.

Network Information. It is widely known by malware developers that
MAC Addresses have specific starting bytes depending on the Hypervisor
Brand and the same Virtual NIC names are used across multiple VMs con-
figurations. For example VirtualBox uses these starting bytes 08:00:27 for
every NIC installed on the Guest OS [40]. An evasive malware simply can
retrieve the MAC address of any NIC installed and perform a compari-
son on the first 3 bytes. NIC information can be retrieved by either call-
ing GetAdaptersInfo or GetAdaptersAddresses. The two aforementioned
Windows API calls are Hooked, Logged and the returned MAC Addresses
and NIC Names are set to values defined by the analyst. For our analysis we
used a MAC address corresponding to Intel Corporate Adapters and a NIC
name that resembles the name of a real network card.

Computer Name detection. The computer name information is used
to fingerprint sandboxes. To evade specific sandboxes, malware developers
build a list of sandboxes computer names and then they use the functions
GetComputerName/Ex/A/W to retrieve this information. Our tool intercepts
attempts to retrieve this information.

IsDebuggerPresent. A Windows API that returns True if a debugger is
attached to the process [41, 14].

CheckRemoteDebuggerPresent. This checks if the process is under a debug-
ger in separate and parallel process [41, 14].

NtQuerySystemInformation(0x23). Syscall that returns a structure con-
taining a flag set to true when a Kernel Debugger is in place [41].

NtQueryObject. This technique makes use of undocumented system calls.
The program begins creating a debug object using NtCreateDebugObject,
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and then the handle to that object is queried to see how many debug objects
are present. In principle, there should be a debug object for each debugged
process, however if a debug object is created and a debugger is present, two
debug objects should be present. This is a very powerful feature and can be
exploited also for anti-anti-debug checks. Our detection is to log the action
if a NtQueryObject syscall is executed after a NtCreateDebugObject. [50]

FindWindow. This technique is commonly used to detect Debuggers and
Analyzers, and returns an Handle to the window corresponding to the window
name specified as a parameter. Using this technique it is possible to know if
specific tools are running on the system [41].

Number of Processors. Nowadays most machines have more than 1 CPU,
however it is not uncommon to find VM configurations with a single CPU.
Thus, the number of processors has been exploited as a feature by evasive
malware to detect VM presence [44]. This information can be retrieved using
Windows API calls, but the way most API calls get this value is reading
a field inside the Process Environment Block (PEB) inside the Windows
process address space. The number of CPU is at the PEB BASE ADDRESS +

0x64. Our tool using the Memory Accesses Controller monitors any access
to this memory location logging the access and setting the value to 4. This
way, any malware will detect a 4 CPU machine.

Appendix A.11. WMI

Windows Management Instrumentation is a proprietary technology by
Microsoft for Enterprise Management of Windows Machine. It is possible
to write scripts for machines maintenance and retrieve their configurations.
This last aspect can be exploited for evasion purposes. Indeed, WMI frame-
work allows C++ developers and system administrators to write WMI Queries
in WQL which is a SQL-like language for WMI information. These queries will
return any kind of System related information. For example, performing
SELECT * FROM Win32 BIOS it is possible to retrieve information about the
BIOS Manufacturer which is specific for each Hypervisor. Other information
can be extracted for fingerprinting purposes such as: process list, system
resources, AVs installed and more [51]. The main method to execute a query
is ExecQuery which requires the query string in the WQL language. Our by-
pass methodology is based on denying and logging every WMI query attempt.
Indeed, it is unfeasible to understand from WQL queries which specific infor-
mation the malware is searching.
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Appendix A.12. Process Environment

NtQueryInformationProcess is a system call to retrieve information about
the running process. Three Process Information Classes (under the form of
integers) can be exploited to detect a debugger. NtQueryInformationPro-

cess(0x07) is the underlying system call corresponding to the CheckRe-

moteDebuggerPresent API call [41]. NtQueryInformationProcess(0x1e)

is undocumented but leaks the presence of a debugger with the same be-
haviour of (1) [37]. NtQueryInformationProcess(0x1f) is undocumented
but behaves as (1) and (2) [37].

NtSetInformationThread(0x11). This is a system call used to prevent the
thread from sending debugging events to the attached debugger [39].

NtCreateThread(HIDE FROM DEBUGGER). This is a system call used to tam-
per with debugging creating a thread that cannot be followed by the debug-
ger [37].

NtGetContextThread(CONTEXT DEBUG REGISTERS). This is used to get the
value of Hardware Debug Registers. When Hardware breakpoints are used,
the returned values are always different from zero because breakpoint ad-
dresses are set [37].

NtSetContextThread(CONTEXT DEBUG REGISTERS). This is used to set the
value of Hardware Debug Registers. In order to tamper with debugging it is
possible to set to 0 every Debug Register in order to miss breakpoints [37].

DebugActiveProcess on Parent Process. A process cannot be debugged
by two debuggers, so if a debugger is in place a child process with debug-
ging privilege should fail its attempt to debug the parent process. Using this
principle, the running process creates a child process and then the child pro-
cess calls DebugActiveProcess on the parent. Therefore, a failed attempt to
debug the parent is a clear indicator of the debugger presence [39]. To han-
dle this case our tool supports forking. The monitoring activity is extended
to the child process and when DebugActiveProcess is called on the parent
process, the action is logged through the Windows API Hooker.

Appendix A.13. File System

An evasive behavior is to check inside known directories if a resource
is present or not. For example, in Windows VirtualBox components are
usually located under C:\Program Files\Oracle\VirtualBox Guest Ad-

ditions\. A successful attempt to open this directory is an indicator of VM
presence [49]. This same concept is applied to devices and files. There are
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multiple ways to access File System resources: First, using NtOpenFile, a
syscall to open files, directories or devices. On success it returns an handle.
When a blacklisted resource is opened, our tool makes the open fail with
the return value STATUS OBJECT NAME NOT FOUND. Second, NtCreateFile is
a syscall designed to supersede NtOpenFile and it has the same function-
alities, but it can also create new files and directories. The same behavior
as NtOpenFile is applied when a blacklisted resource is created or opened.
Third, NtQueryAttributesFile returns information about creation time,
last access and write time, file size and file name length. Depending on the
required attributes, file information can be more detailed. This syscall fails
when the file is non existent, so a stealthier approach is to call it to check file
presence. Also in this case our tool returns STATUS OBJECT NAME NOT FOUND

when a blacklisted resource is detected. Finally, NtQueryDirectoryFileEx
is a system call used to list the files contained in a directory. Before return-
ing the whole list of files, our tool checks if some of them contain blacklisted
keywords. In the latter case, the resource name is replaced with a random
string.

Appendix A.14. List Processes

An easy way to detect debuggers, VMs and generic analysis tools is the
process enumeration method [49]. The list of the processes can be retrieved
using two methods. First, by calling NtQuerySystemInformation(SYSTEM -

PROCESS INFORMATION), where SYSTEM PROCESS INFORMATION = 5, which is
usually called by some high-level Windows API functions such as Create-

Toolhelp32Snapshot. Second, using the EnumProcesses Windows API, fol-
lowed by GetModuleBaseName. Our tool is able to log attempts to retrieve
the process list substituting at runtime the process names in blacklist with
random strings, thus, fooling malware.

Appendix A.15. List Services

Services Enumeration. When a Guest OS is installed, hypervisor-related
artifacts (e.g., VirtualBox Guest Additions) could be needed to work prop-
erly. These components could run as services inside the OS. Malware enu-
merates services to search for possible VM components [49]. This behavior
works as follows. The Service Manager is opened via OpenSCManager Win-
dows API call with the service enumeration permission. The actual Service
Enumeration is performed using EnumServicesStatus, which returns a list
of Service Names in the form of Keys for the Services Manager Database
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and a human readable format. If a malware sample knows exactly what
it is searching for it can call GetServiceKeyName, GetServiceDisplayName
or OpenService after OpenSCManager. The first requires the human read-
able name of the service, the second one requires the name assigned by the
Service Manager Database, while the last one is used to open an existing
service based on its name. We log the aforementioned calls and, if EnumSer-
vicesStatus reveals a name contained in our blacklist, the service name is
substituted with random Display and Key names, while when OpenService

is called on a blacklisted service, the action fails. If the detection of running
VM services is done using GetServiceKeyName or GetServiceDisplayName,
the value returned is an empty string, as specified by the documentation in
case of failure.

Appendix A.16. Drivers Information

Drivers Enumeration. The Drivers enumeration evasion technique follows
the same principle of Services Enumeration. In order to work correctly most
Guest OS contains drivers related to Virtual Peripherals built by the Hyper-
visor. These components can be enumerated either by direct access to the
Windows Driver folder or using a Windows API call. The first method can
by handled blocking access to VM files to the malware as we will discuss in
Subsection Appendix A.13. Some examples of drivers checked by malware
is described in [52]. The second method exploits EnumDeviceDriver API
call. An initial call is done to EnumDeviceDriver, which returns an array of
drivers addresses. For each of them a call is done to GetDeviceDriverBase-

Name in order to get the Driver name. The Anti-Evasion System intercepts
EnumDeviceDrivers as an action and replace any VM-related driver name
returned by GetDeviceDriverBaseName with a random string.
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