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Abstract—This paper introduces the Federated Lab (in short,
FedLab), a virtual platform enabling shared research and ex-
perimentation on Internet of Things (IoT) devices, protocols,
and functionalities in a network of geographically-distributed
peers. In a nutshell, the FedLab allows multiple peers to share
heterogeneous IoT hardware (devices) and software functionalities
(capabilities) with a set of authenticated partners, easing the
design of geographically-distributed experiments and providing
a platform that enables joint research. The FedLab is conceived
with ease of deployment and use in mind, focuses on compatibility-
by-design, and it is easily deployable on multiple host operating
systems as a plug-and-play tool. Besides motivating the design of
the FedLab and its requirements, the paper also provides two
use cases of the FedLab for the IoT Security research domain,
demonstrating the potential of the FedLab to enable actual joint
research. Finally, we release the source code of the components
of the FedLab as open-source, to foster its independent adoption,
deployment, and extension by the research community.

Index Terms—IoT; Open Platform; Testbed; Experimentation.

I. INTRODUCTION

The last years witnessed the pervasive diffusion of the
Internet of Things (IoT) paradigm. Today, smart Internet-
connected devices are increasingly deployed in several ap-
plication scenarios, e.g., Smart Home, Buildings, Industrial,
and Transportation, and a significant number of Cloud plat-
forms, web-based applications, and functionalities are largely
available on the market [1]. At the same time, companies and
research centres worldwide are very active in the IoT domain,
contributing an ever-increasing amount of innovative solutions
for domain-specific challenges and issues [2].

In this context, shared research and experimentation take an
increasingly important role in the design and evaluation of the
proposed solutions [3]. Wherever research teams in universities
and small companies provide expertise limited to specific
application areas, collaboration in the form of consortia of
possibly geographically-distributed teams is needed to develop
reliable and accurately-tested IoT-based solutions [4], [5]. A
stemming example of a research domain where shared research
and experimentation are often required is IoT security. The
security personnel working at companies and research centres

often have expertise with a limited set of security tools and
functionalities, e.g., defensive or offensive-only tools, resulting
in security products and solutions to be tested against a
small range of conditions and attack sets. In this context, a
shared platform involving a set of trusted partners, each with
distinguishing skills, might enable controlled shared experi-
mentation and testing, resulting in more tight collaboration and,
ultimately, more secure IoT products and functionalities [6].

However, shared research in the IoT domain is often chal-
lenging. Collaboration is often prevented by several factors,
such as the geographical distribution of the teams, the con-
fidentiality of the source code of the conceived tools and
functionalities, the heterogeneity of the protocols and commu-
nication technologies available for the IoT, and the lack of a
trusted collaboration platform where such tools can be made
available securely to the consortium and robustly evaluated.
As a result, solutions conceived in the IoT area are hard to
test comprehensively, with a resulting negative impact on their
overall quality, usability, security and, ultimately, impact on
society.

Contribution. In this paper, we introduce the Federated Lab
(FedLab), the first virtual platform enabling shared research
and experimentation on IoT devices and functionalities across
multiple geographically-distributed sites. The FedLab allows
the participating partners to share with a set of authenticated
peers locally-deployed IoT devices, supporting by-design mul-
tiple IoT protocols and architectures. Moreover, peers in Fed-
Lab can share locally-conceived IoT functionalities, namely,
capabilities, and make them usable to other partners while
not disclosing potentially-sensitive implementation details. In
addition, the FedLab has been designed with compatibility and
ease of use in mind, being deployable on multiple operating
systems and running out of the box with minimal configuration.
We discuss the motivations and design of the FedLab, the
rationale of the implementation, and the users’ experience with
the tool. We also present two use cases of the FedLab for
the IoT security community, showing the role of the FedLab
for allowing usage of capabilities and enabling distributed



experimentation, respectively. Finally, we release the source
code of FedLab as open-source, allowing interested readers
to deploy further our solution and extend it with additional
functionalities [7].

Roadmap. The paper is organized as follows. Sec. II moti-
vates the design of the FedLab, Sec. III provides implementa-
tion details and the users’ experience, Sec. IV shows two use
cases of the FedLab, Sec. V reviews related work, and finally,
Sec. VI concludes the paper and outlines future work.

II. FEDLAB REQUIREMENTS AND DESIGN

In this section, we first introduce the requirements of the
FedLab (Sec. II-A). Then, we present the architecture details
(Sec. II-B) and the major supported operations (Sec. II-C).

A. Federated Lab Requirements

The FedLab originates from the need for a trusted plat-
form where to carry out shared research and experimentation
within consortia of multiple geographically-distributed research
groups. The design of an effective and efficient platform
enabling such an objective is challenging, as it requires the
fulfilment of several binding requirements. First, the FedLab
should be a distributed platform (R1), supporting the connec-
tion of multiple geographically-distributed laboratories in a
shared virtual network. At the same time, due to the potential
side effects of the experiments on connected networks, the
FedLab should be isolated from the private networks of the
participating partners (R2), in a way not to affect business
continuity and availability. The FedLab should also provide
users’ authentication, guaranteeing to share information only
between the intended parties (R3), as well as accountability
of the operations performed during the interaction with the
platform. Moreover, the FedLab should support basic logging
and auditing features (R4), so that performed operations could
be always traced back to a given user. Looking at the function-
alities to be provided, the FedLab should be able to support
the sharing of both IoT devices and IoT-related functionalities
(R5). For instance, users can decide to connect to the FedLab
their IoT devices, to test the robustness of such devices
against customized attacks, or evaluate if a functionality made
available by one of the partners can work together with a
shared device. To this aim, the FedLab should support the
discovery of resources (devices and functionalities) currently
available in the platform (R6), reporting also an indication of
their current availability and usage. In addition, considering the
large variety of IoT communication protocols and standards,
the FedLab should be able to support by-design the connection
of heterogeneous devices (R7), independently from the specific
MAC-layer protocol and hardware features. Finally, to foster its
adoption by all the partners, the FedLab should have appealing
usability features, i.e., it should be easy to install (R8), with
only minimal configuration needed by the user. At the same
time, it should be able to run on multiple software platforms
(R9), independently from the local hardware and operating
system.

Table I
RELATIONSHIP BETWEEN DESIGN REQUIREMENTS, COMPONENTS, AND

FUNCTIONALITIES OF THE FEDLAB.

Comp. Functionality R1 R2 R3 R4 R5 R6 R7 R8 R9
FedLab
Server

VPN Server ✓ ✓ ✓
Resource
Directory

✓

Bundle
Box VPN Client ✓ ✓ ✓

Devices and
Capabilities
Management

✓ ✓ ✓ ✓

ACL ✓ ✓
Vagrant
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Figure 1. Network Architecture of the FedLab.

As we will show in Sec. V, the requirements described
above are not supported by any available solution at the
time of this writing, motivating the design of our solution.
Tab. I anticipates the solutions we conceived to address the
requirements discussed above in the design and implementation
of the FedLab. Details follow in the next sections.

B. Architecture of the FedLab

Figure 1 shows the network architecture of the FedLab.
FedLab Server. The FedLab Server hosts the core processes
and functionalities of the FedLab. First, it includes a Virtual
Private Network (VPN) Server, available over the public Inter-
net, in charge of establishing and managing connections to the
FedLab. The VPN server allows connections only from legiti-
mate peers, in possession of valid X.509 certificates, released
to the users at joining time. Thus, in case of misbehaviour
or voluntary leave by a partner, the FedLab Server stops the
connection of such partners to the shared platform. Being in
charge of managing connections among peers, the FedLab
Server takes part in all platform activities. Such explicit in-
volvement eases the deployment of basic logging and auditing
functionalities, to be analyzed when debugging and tracing
are needed. Furthermore, the FedLab server hosts the FedLab
Directory, i.e., the real-time list of all the resources available
within the FedLab, reporting also the indication of the partner
sharing such resources and the related status, either online
(available for use) or offline (not available).



Bundle Box. At the client-side, the Bundle Box is the software
tool allowing partners’ connection to the FedLab, as well
as smooth management of shared resources. In a nutshell,
the Bundle Box is a piece of software, allowing the partner
to connect to the FedLab and share resources. The Bundle
Box includes a VPN client instance, taking care of the vir-
tual connection of the partner’s network to the FedLab. To
this aim, at the partner’s request to join the platform, the
network administrator of the FedLab generates a dedicated
X.509 certificate, to be used to connect securely. Moreover, the
Bundle Box manages the sharing of local resources within the
FedLab. It takes care of communicating to the FedLab server
the set of resources shared by the partner, i.e., IoT devices and
capabilities, together with the related status (online or offline).
The FedLab partner can share specific IoT devices (e.g., smart
doorbells, smart cameras, and smart lights, as sketched for the
Partner 1 in Fig. 1), to be connected either directly or through
multiple hops to the physical machine where the Bundle Box
runs. If IoT devices use a different communication technology
than IP (e.g., Bluetooth or Zigbee), the peer can make such
IoT devices part of the FedLab by sharing the gateway as
a device, and associating the various MAC addresses of the
non-IP devices with the IP of the gateway. In this way, the
traffic flowing to and from the non-IP devices will be integrated
transparently into the FedLab.

The Bundle Box also connects to the FedLab one or more
servers hosting capabilities, i.e., homemade functionalities de-
veloped and made available by a peer. Capabilities may include
IoT applications or other services of any type (including also
traditional IT services), and tools developed and/or deployed by
the peers in the consortium. Capabilities are shared according
to an Application Program Interface (API)-based logic: the
responsible partner shares a set of procedures, namely, APIs,
allowing all peers to create their own applications using the
shared remote functionalities, without having access to the
native code of such basic blocks. IoT devices and capabilities
are explicitly shared one by one with the FedLab, by specifying
their unique MAC address to the Bundle Box.

Moreover, the Bundle Box also includes an Access Control
List (ACL), following a white-listing approach. Only hosts
whose MAC address is specified in the ACL are shared with
the FedLab, while packets from and to other IP-enabled devices
are rejected. Using such an approach, the Bundle Box ensures
that only traffic from and to shared resources is managed. On
the one hand, IoT devices requiring a connection to the public
Internet can use such online services without any limitations.
On the other hand, the Bundle Box leaves to the FedLab
partner the responsibility of isolating the shared resources
from other parts of the local network. As IoT devices and
capabilities may be available on dynamic IP addresses or can
be disconnected, the Bundle Box also takes care of maintaining
an updated association between the specific resource and the
current IP address. To this aim, the Bundle Box interacts with
the Address Resolution Protocol (ARP) tables of the host where
it is deployed, to get the IP address associated with the MAC

address of shared resources. The Bundle Box communicates
to the FedLab server the list of available resources and their
status, to maintain the FedLab Directory. When resources are
not available, they are not shown in the ARP tables, and they
are removed from the FedLab Directory after a given period.
Similarly, when a partner would like to stop sharing resources,
the corresponding entry can be deleted from the local ACL.
Such a change is immediately communicated to the FedLab
server, and the resource is deleted from the FedLab Directory.
Guest Access. When connection only to the FedLab is re-
quired, e.g., to use resources shared by other partners while not
sharing any local resources, a partner can use the FedLabGuest
Access (as shown for Partner 2 in Fig. 1). Compared to the
Bundle Box, the guest access only provides the connection to
the FedLab, as well as the tools to discover resources shared by
other partners. Note that the partner connecting to the FedLab
as a guest still receives its unique X.509 certificate, and thus,
it is always authenticated.

C. FedLab Processes

The management of the FedLab requires several structured
processes, managed jointly by the FedLab administrator, the
network administrator of the local partner joining the FedLab,
the FedLab server and the Bundle Box. We briefly describe the
main processes below.

Joining the FedLab. When a partner would like to join
the FedLab, it contacts the FedLab administrator. The FedLab
administrator evaluates the request and, assuming the request
is accepted, generates a unique X.509 certificate, to be used
to authenticate the joining partner. Then, the FedLab adminis-
trator delivers to the system administrator of the local partner
network the X.509 certificate and an instance of the Bundle
Box, so that it can deploy the Bundle Box locally.

Leaving the FedLab. When a partner would like to leave the
FedLab, it notifies the FedLab administrator. As experiments
could be running, with the partner’s consent, a grace period
may be applicable. Meanwhile, other partners are also informed
about the change. At the end of the grace period, the FedLab
administrator revokes the certificate of the leaving partner, thus
preventing it (and all its shared resources) from accessing the
FedLab.

Adding Resources to the FedLab. Assume a partner would
like to share a new resource with the FedLab. If the resource
is an IoT device, the local administrator retrieves its MAC
address, and it uses the device type (e.g., smart camera), MAC
address, and description as parameters in a dedicated script
within the Bundle Box. For capabilities, the local administrator
should get also the MAC address of the host exposing the
capability and the used port. The Bundle Box automatically
adds the information listed above to the local list of shared
resources, and it checks the resource status. To this aim, the
Bundle Box checks if the provided MAC address is listed in the
local ARP table. If yes, it means that the resource is available;
otherwise, the resource is not available. Then, the Bundle Box
communicates to the FedLab server the information previously
provided by the local administrator about the new resource,
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Figure 2. Implementation architecture of the FedLab server and bundle box.

together with the related status. Finally, the FedLab server
updates the FedLab Directory with the new information.

Removing Resources from the FedLab. When a partner
would like to remove a shared resource from the FedLab, it
simply disconnects the resource. The local Bundle Box detects
the resource disconnection and communicates the event to the
FedLab server, which marks the resource as not available. If
the status of the resource does not change for a pre-defined
time (e.g., two weeks), the local Bundle Box autonomously
removes the resource from the list of shared devices.

Accessing Resources within the FedLab. When a partner
would like to access resources available in the FedLab, it may
first retrieve the updated FedLab Directory (see Tab. II). Using
the directory, the user can identify the resource to be accessed,
retrieve the IP address of the resource and, if necessary, the
port. Then, it can connect to the resource via browser or
terminal, using the IP address and port just retrieved, and
use the resource according to the related usage terms. All the
interactions are logged by the FedLab server.

III. IMPLEMENTATION DETAILS AND USER EXPERIENCE

This section describes the implementation of the FedLab
(Sec. III-A) and provides an overview of the user experience
when connecting to FedLab (Sec. III-B).

A. Implementation Details

We implemented a prototype of the FedLab by integrating
several open-source technologies. As for the VPN, we used
OpenVPN for both the client (integrated into the Bundle
Box) and the server (part of the FedLab server) [8], and we
configured the VPN server to accept connections only from
valid clients, i.e., peers providing valid X.509 certificates,
generated through the EasyRSA tool [9]. Figure 1 shows the
architecture and information flow of our implementation.

FedLab Server. The FedLab server is deployed on the host
machine as a set of four (4) Docker containers, managed by
docker-compose. We recall that Docker is a software platform
that simplifies the process of creating, deploying, and running
software applications, by allowing the developer to use con-
tainers, i.e., packages including applications and all their de-
pendencies [10]. Docker-compose, instead, is used to configure
and deploy multiple containers in a centralized way [11]. Each
of the containers manages specific functionalities. The first runs
the OpenVPN server, managing secure network connections to

Table II
LIST OF REST API ENDPOINTS OF THE FEDLAB DIRECTORY,

CORRESPONDING REQUEST TYPE AND DESCRIPTION.

Endpoint Request
Type

Summary

/capabilities GET Request all capabilities
/capabilities POST Add capability to

FedLab
/devices GET Request all devices
/devices POST Add device to FedLab

/HTMLdirectory GET Request Directory
(HTML version)

/directory GET Request Directory
(JSON version)

/statusUpdate POST Update device status
/removeDeviceRequest POST Remove a device from

the FedLab
/removeCapabilityRequest POST Remove a capability

from the FedLab

the FedLab. The second container runs an instance of NetBox,
i.e., an Infrastructure Resource Modeling (IRM) application
designed to empower network automation, used to easily keep
track of the IP addresses allocated to the different parties
participating in the FedLab [12]. The third container hosts an
FTP server, used for storing user manuals and instructions for
using capabilities. Finally, the fourth container in the FedLab
server manages the FedLab Directory. The FedLab Directory
is a Java web application, implemented using Spring, i.e., a
framework easing the implementation and deployment of Java
web applications [13]. The FedLab Directory exposes seven
REST API endpoints, summarized in Tab. II, which can be
queried via HTTP GET or POST requests. Overall, such end-
points automatize the interaction between the FedLab Directory
and locally deployed Bundle Box instances. Moreover, the use
of REST API also enables the participating parties to write
their own applications, to fulfil specific automation needs.

Bundle Box. The Bundle Box, installed by the partners lo-
cally to participate in the FedLab, consists of a Virtual Machine
(VM) in the form of a Vagrant box. Vagrant is a cross-platform
software used to create and run VMs using a hypervisor and the
parameters specified in a dedicated configuration file, namely,
the Vagrantfile. The Vagrantfile automatically manages the OS
image used to build the VM, all the steps needed to configure
the VM and install the scripts, and software dependencies.
The user can run a textual command in the local terminal to
provision and boot the specified VM, and then just use it as
a regular VM. Thus, the usage of Vagrant allows achieving
software independence, reproducibility of the deployment, and
software flexibility, as any change would only require the
modification of a line in the configuration file.
The Bundle Box includes several components. First, it includes
an OpenVPN Client instance, allowing to connect to the
FedLab via the OpenVPN server. Moreover, it includes a
firewall, consisting, in turn, of a layer-2 firewall and a layer-
3 firewall. Overall, an ACL is used to manage which devices



are allowed to connect to and receive traffic originating from
the FedLab. The layer-2 firewall is used to block unauthorized
ARP messages (at the link layer), leveraging local arptables
and using the default-deny configuration. At the same time, the
layer-3 firewall is used to block unauthorized IP traffic (at the
network layer), leveraging local iptables and the default-deny
configuration. Thus, as soon as a new resource is added to
the FedLab by the partner, the Bundle Box sets corresponding
ACCEPT rules for this new resource in the ACL, allowing
traffic to flow to and from the resource.
The Bundle Box also integrates a Dynamic Host Configuration
Protocol (DHCP) server, in charge of assigning IP addresses to
IoT devices. To this aim, the Bundle Box integrates a Netbox
instance, based on the code released on DockerHub [14],
automatizing network configuration. Moreover, the Bundle
Box includes automated processes for device status updates
and for removing outdated entries from the ACL. It also
includes scripts for sending and retrieving user manuals from
the FedLab server, and an application for remotely starting
and stopping the capture of packets on the segmented network
created by the Bundle Box (see Sec. IV-B).
Finally, the Bundle Box includes a set of scripts, used for the
automatic management of partners’ operations in the FedLab.
Ready-to-use scripts are available for adding a resource to
the FedLab, removing a resource, exposing a resource, and
stopping exposing a resource to the FedLab, to name a few.

Guest Access. We also configured an automated software
tool for connecting to the FedLab only, namely, the Guest
Access package. It includes an OpenVPN client instance and
the unique X.509 certificate assigned to the specific partner.

We released the source code of the FedLab server and bundle
box as open-source, to allow interested readers to deploy
the FedLab and further customise it for shared research and
experimentation [7].

B. Running a FedLab instance

At the time of this writing, three partners take part in
the FedLab, within the NWO project INTERSECT [15]. The
FedLab Server is deployed at TU/e, Eindhoven, Netherlands,
while Bundle Box instances are running at TU/e (Eindhoven,
Netherlands), University of Twente (Enschede, Netherlands),
and TNO (Den Haag, Netherlands). Figure 3 shows a picture
of the deployment at TU/e, Eindhoven. The FedLab server and
two Bundle Box instances run on an Intel(R) Core(TM) i7-
4700MQ laptop, equipped with 16GB of RAM and 230GB
of HDD. The local IoT domain shared through the FedLab
includes one Foscam IoT smart camera, one Ring IoT smart
doorbell, and one TP-Link IoT smart plug. Two access points
are included in the setup, just to ease physical connections.

We now describe what a typical workflow looks like from
the perspective of a FedLab user, connecting to the FedLab via
the Bundle Box. After the setup of the Bundle Box, the user
can use any SSH client to access the Bundle Box. Figure 4
reports the screen shown at connection time. By default, the
Bundle Box shows the information on the current system usage

IoT
Devices

Server and 
Bundle Boxes

Access Points

Figure 3. The test setup at TU/e, including the laptop hosting the FedLab
server and two bundle boxes, and the local IoT domain, including a Foscam
IoT smart camera, a Ring IoT smart doorbell, and a TP-Link IoT smart plug.
Access Points are included in the setup to ease physical connections.

Figure 4. Screenshot of the Bundle Box environment on the partner’s host.

(computational load, memory usage, and running processes), as
well as information on updates availability. The user can then
connect to the desired resource, either using the browser or a
client via the terminal, using information retrieved from the
FedLab Directory.

IV. FEDLAB USE CASES

In this section, we showcase the potential of the FedLab
in the IoT security research domain. Sec. IV-A shows how
to use the capabilities in FedLab to test the robustness of
Intrusion Detection Systems (IDSs), while Sec. IV-B describes
a security-related experiment enabled by the FedLab. Both
presented use cases focus on security aspects of IoT deploy-
ments, but applications to other domains, such as performance
or reliability analysis, can be equally devised.

A. Usage of FedLab Capabilities

In this section, we show an example of the usage of
capabilities within the FedLab. Specifically, we leverage the
SAIBERSOC tool described in [16]. SAIBERSOC is a tool
enabling security researchers to assess the detection capabilities



Figure 5. SAIBERSOC web interface, where the user has configured an attack
trace made up of three consecutive phases.

of a security monitoring infrastructure (such as a Security
Operation Center, SOC) by injecting attack traces into the
security sensors. The tool leverages the MITRE ATT&CK
Framework and defines a procedure to automatically assemble
and inject synthetic attacks to network domains monitored by
an operational Security Operation Center (SOC). By analyzing
metrics such as the detection accuracy, detection time, and
time-to-investigation against such attacks, security researchers
can evaluate the robustness, effectiveness, and efficiency of
their monitoring infrastructure, as well as take actions to
improve it in case of non-compliance to minimal requirements.

We deployed an instance of the SAIBERSOC tool on a
dedicated machine, and we shared it as a capability within
the FedLab, namely, the TUe-SAIBERSOC. Through the shared
capability, users can specify how to build the attack traces, i.e.,
which attacks to imitate for the generation of the synthetic
trace, how to combine those attacks, the packet interarrival
times and throughput.

The client using the service also has to specify one or more
IP addresses, uniquely identifying which devices to target for
the attack. Then, using the web interface, the client has to press
the button Build to assemble the attack traces into a single one,
and then press Start to launch the assembled attack against the
specified device(s). Figure 5 shows a screenshot of the web
interface available for TUe-SAIBERSOC, where the tool has
been configured to execute a complex attack in three phases.

At TU/e, the local Bundle Box also exposes the TUe-
SOC capability. In brief, TUe-SOC is a collection of security
monitoring tools, often used in deployed SOCs to moni-
tor and identify the presence of malicious traffic. TUe-SOC
leverages Security Onion, a free and open Linux distribution
for threat hunting, enterprise security monitoring and log
management [17]. It uses Suricata as the core IDS, while
the data pipeline is built upon Elastic Stack tools, such as
Beats, Logstash, Elasticsearch, and Kibana. The TUe-SOC
capability supports the input of a specific network interface,
to be monitored for detection of potentially malicious traffic.
Therefore, as a use case of the combined usage of shared
capabilities within the FedLab, a user interested to evaluate

Figure 6. Web interface of the TUe-SOC capability, showing alerts due to the
injection of malicious traffic from the TUe-SAIBERSOC capability.

the performance of the TUe-SOC can inject synthetic traffic
generated through the TUe-SAIBERSOC capability, and then
look at the metrics of interest to deduce the effectiveness of
the monitoring infrastructure. We ran the attacks build as in
Fig. 5 on a specific network interface, and we configured the
TUe-SOC capability to analyze traffic on the same interface.
As shown in the screenshot of Fig. 6, the TUe-SOC detects
the presence of malicious activity (see the alerts shown on
the dashboard, as generated by the Suricata module), and
provides additional information on the type of threat affecting
the monitored network interface. Besides, the TUe-SOC also
indicates the severity of the attack.

FedLab users can use the TUe-SAIBERSOC and TUe-SOC
capabilities to run the desired shared experimentation. For ex-
ample, partners interested in assessing the performance of their
monitoring platform against specific IoT attacks can deploy
such tools as a local capability, share it through the FedLab,
configure TUe-SAIBERSOC to build several attack traces, and
then run such attacks on the same interface monitored by
the monitoring tools, to assess their robustness. At the same
time, if new attacks are conceived by a partner, they can
be shared through the FedLab and configured to generate
malicious traffic on the same network interface monitored by
the TUe-SOC capability, to evaluate the robustness of the attack
against an example monitoring infrastructure. Likewise, the
TUe-SOC can be used as a capability in its own right to
monitor specific traffic in and from IoT devices of interest,
for example, to detect potentially unwanted open connections
towards suspicious servers (or servers in specific countries).

B. Enabling shared experimentation through the FedLab

In this section, we show how to enable shared experimenta-
tion through the FedLab. Specifically, we rely on MUDscope,
an IoT network intrusion detection approach [18]. MUDscope
first captures anomalous traffic affecting an IoT device in a
network environment by leveraging the device’s Manufacturer
Usage Description (MUD) profile—a manufacturer-provided
networking whitelist defined according to the MUD IETF
specification [19]. The tool then characterizes how this traffic
changes over time and generates signatures for the captured
anomalous activities. As network threats targeting multiple
devices produce similar effects on the devices’ MUD-rejected
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traffic, MUDscope correlates anomalies collected from multi-
ple geographically-distributed devices, and it detects evolving
IoT threats.

In this context, the FedLab has been used to instantiate a
distributed testbed to evaluate MUDscope, enabling local traffic
logging and information sharing across multiple locations.
Recall from Sec. III that any instance of the Bundle Box
supports the default sniff functionality, logging in a dedicated
file all the traffic flowing from and to local resources shared to
the FedLab. As depicted in Fig. 7, we deployed two equivalent
pairs of IoT devices at distinct geographical locations, i.e.,
TU/e (Eindhoven, Netherlands) and UT (Enschede, Nether-
lands). These deployments use Bundle Boxes, as they share
resources to the FedLab. Guest access was then enabled for
a server at TNO, Den Haag (Netherlands), used to launch
malicious traffic to the devices in Enschede and Eindhoven.

Through several experiments, we launched the same at-
tack routine from the TNO FedLab guest to selected devices
across the deployments at Enschede and Eindhoven. In each
experiment, we recorded the local traffic received by the IoT
devices at both locations through the default sniff Bundle Box
functionality. Then, the recorded traces were processed with
MUDscope from [18]. As shown in Fig. 8, MUDscope was
able to identify a high correlation score in the anomaly signa-
tures obtained from the MUD-rejected traffic of the attacked
devices, to enhance IoT network threat situational awareness.
Therefore, the FedLab proved instrumental in easily setting up
a distributed IoT testing environment for this research case.

V. RELATED WORK

Many IoT-related testbeds have been proposed in the sci-
entific literature in the last years, with a focus on either
networking functionalities or security capabilities.

The MoteLab testbed offered a solution for multiple simul-
taneous firmware updates [4]. It provides a web interface to
instruct a Command & Control server to distribute firmware
updates to network nodes, or to schedule a job. Although it is
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Figure 8. Sample of the results from [18], showing the signature fluctu-
ations over one of the metrics used to detect network anomalies, namely,
(clusters_balance), for two attacked devices (blue and orange lines) and
two non-attacked devices (green and red lines). The matrices below the figures
show the respective correlation values. The upper plot considers as attacked
devices the IP camera in Enschede and the IP camera in Eindhoven, while the
bottom one considers as attacked devices the IP camera in Enschede and the
smart plug in Eindhoven. The generated anomalous signatures are matching,
while negligible fluctuations are recorded for non-attacked devices.

Table III
QUALITATIVE COMPARISON OF THE FEDLAB AND WITH RELATED WORK.

Ref. R1 R2 R3 R4 R5 R6 R7 R8 R9

[4]
[5] - - -
[6] - -
[20] -
[21] -
[22] - -
[23]
FedLab

released as open-source, MoteLab does not allow remote join
of the testbed (req. R1 in Sec. II-A), and neither does remote
communication. Also, it does not support either the sharing of
capabilities (R5) or multiple IoT protocols (R7).

The Kansei testbed in [5] is a distributed platform supporting
multiple hardware and protocols. However, it only allows
sharing of IoT devices, not capabilities (R5). It also does
not support central logging and auditing (R4), and it does
not include a mechanism for resource discovery (R6). At the
same time, it is not clear how users can install the software
needed for joining the platform (R8), and if such software is
compatible with multiple operating systems (R9).

NetEye [20], focused on Wireless Sensor Networkss
(WSNs), included 130 TelosB motes with IEEE 802.15.4 radios
and 15 Linux laptops equipped with IEEE 802.11a/b/g radios.
However, it is not distributed (not meeting the req. R1). Also, it



does not support authentication (R3), remote sharing of devices
and capabilities (R5), and heterogeneous IoT devices (R7).

Wisebed [21] is the testbed closest to the FedLab. It is
a distributed platform easing experimentation across multi-
ple distributed locations, supporting peer authentication and
heterogeneous devices. However, Wisebed is meant to share
devices only, not capabilities (R5). Also, users can connect
to the platform only using a web page (R9), and automated
resource discovery is not supported (R6).

Communication among several remote nodes is offered
by FIT IoT-LAB, interconnecting 2, 700 sensors across
France [22]. The user can get bare-metal access to the nodes
via a web interface, upload firmware, and run tests. However,
the platform does not allow the sharing of capabilities (R5),
and it runs only on a few software platforms (R9).

Considering security-oriented solutions, the authors in [23]
recently discussed the current lack of means to structurally
evaluate the security of IoT devices. To close the gap, they
discussed the architecture of a system to evaluate IoT devices’
security, providing also a reference implementation. Although
supporting some of our features, it is not geographically
distributed (R1), it does not support peer authentication (R3),
and public device access is not supported (R5). Similar issues
can be found in the testbed proposed in [6], focusing on
the automation of security tests. Such a testbed also supports
access control, but it is not a plug-and-play solution (R8), and
it is not clear how it can support isolation and authentication.

Table III summarizes our discussion and highlights the
features supported (or not) by the surveyed platforms, including
our FedLab. Although the FedLab shares similarities with the
discussed testbeds, none of the available solutions fulfils all the
identified requirements, at the same time. Such requirements
are supported, instead, by the FedLab, as previously detailed in
Tab. I. Therefore, the FedLab fulfils by-design all the identified
requirements, emerging as the most suitable solution for shared
research and experimentation on IoT across geographically-
distributed consortia.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented the FedLab, the first open-source
virtual platform enabling shared research and experimenta-
tion of IoT functionalities across multiple geographically-
distributed sites. Through the FedLab, partners in a consortium
can share IoT devices and IoT-based functionalities conceived
by other peers, easily carrying out shared research and tests in
a distributed environment. As important added values, FedLab
has been conceived with interoperability and ease of use in
mind, being compatible with multiple IoT technologies and
usable out of the box with minimal configuration. We also
showed the FedLab at work, providing two use-cases in the IoT
security area where its deployment enabled shared experiments
and contributed to easing experimentation involving multiple
geographically-distributed partners.

Future work will focus on the support of additional features,
such as the booking of resources and scheduled experiments.
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