
Stepping out of the MUD: Contextual threat information for IoT
devices with manufacturer-provided behavior profiles

Luca Morgese Zangrandi
luca.morgese@tno.nl

TNO & University of Twente

Thijs van Ede
t.s.vanede@utwente.nl
University of Twente

Tim Booij
tim.booij@tno.nl

TNO

Savio Sciancalepore
s.sciancalepore@tue.nl

Eindhoven University of Technology

Luca Allodi
l.allodi@tue.nl

Eindhoven University of Technology

Andrea Continella
a.continella@utwente.nl
University of Twente

ABSTRACT

Besides coming with unprecedented benefits, the Internet of Things
(IoT) suffers deficits in security measures, leading to attacks increas-
ing every year. In particular, network environments such as smart
homes lack managed security capabilities to detect IoT-related at-
tacks; IoT devices hosted therein are thus more easily targeted by
threats. As such, context awareness of IoT infections is hard to
achieve, preventing prompt response. In this work, we propose
MUDscope, an approach to monitor malicious network activities
affecting IoT systems in real-world consumer environments. We
leverage the recent Manufacturer Usage Description (MUD) specifi-
cation, which defines networking whitelists for IoT devices in MUD
profiles, to reflect consistent and necessarily-anomalous activities
from smart things. Our approach characterizes this traffic and ex-
tracts signatures for given attacks. By analyzing attack signatures
for multiple devices, we gather insights into emerging attack pat-
terns. We evaluate our approach on both an existing dataset and a
new, openly available dataset created for this research. We show
thatMUDscope detects several attacks targeting IoT devices with
an F1-score of 95.77% and correctly identifies signatures for specific
attacks with an F1-score of 87.72%.
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1 INTRODUCTION

The Internet of Things (IoT) refers to a cyber-physical ecosystem
of interconnected devices (things), which exchange and process
data to enable intelligent decision-making [10]. IoT adoption is
in continuous growth, as leading agencies forecast the number
of Internet-connected devices to quadruple from 9 billion in 2020
to 38 billion in 2030 [23]. Unfortunately, increasing IoT adoption
leads to an increased attack surface. In 2020 only, the number of
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IoT-directed attacks increased by 800% compared to the previous
year [36], while the first half of 2021 saw one and a half billion
attacks on smart devices, more than twice than in the same period
in 2020 [59].

Research shows that a considerable share of compromised IoT
devices is located within consumer environments (Internet Ser-
vice Providers (ISPs) and telecommunications Internet domains
[42, 65]), pointing to IoT environments that we refer to as loosely-
protected: households, shops, restoration, open-access Wi-Fi areas,
and alike. Attackers actively infiltrate in these environments [62]
where compromised IoT devices can proliferate largely undetected
by the defenders’ community.

To improve detection, research and industry stress the need to
enhance continuous collection and sharing of actionable IoT secu-
rity intelligence, e.g., indicators of compromise, IoT vulnerabilities,
attackers’ goals and trends [8, 13, 42, 55, 68]. This information
allows faster, more precise, and better-informed security interven-
tions on both network administrators’ and device vendors’ sides
[24, 42, 49, 51], making IoT integration and use safer.

Three main state-of-art approaches exist to collect and share se-
curity intelligence: (IoT) honeypots, network telescopes, and Threat
Intelligence (TI) feeds. Each, though, has limitations with respect
to the visibility of real-world loosely-protected IoT environments.
IoT honeypots mimic vulnerable devices to study how attackers
interact with them [27, 62, 72]. However, they can be fingerprinted
by attackers, and do not directly represent how anomalies spread
through real-world consumer deployments [12, 62, 69]. Network
telescopes (or, “darknets”) are portions of routable IP addresses that
do not host any service, so all traffic that they receive is anomalous
by definition [39]. The insights that network telescopes derive are
biased toward Internet-wide activities [31, 42, 53, 60], so they cannot
detect targeted IoT attacks [51]. Crowd-sourced threat intelligence
feeds such as AlienVaultOTX, Censys, and Shodan [3, 5, 61], when
IoT-specific, can be highly inconsistent in reporting timings and cov-
erage of attacks [4, 15, 31]. Other approaches such as DShield [26]
collect firewall logs from multiple deployments and produce large-
scale information on network compromise attempts. However, they
are not IoT- nor deployment-specific, and require additional config-
uration at the deployments’ end, making them not suitable for an
average consumer [29].

In summary, we identify a gap in the state-of-art about accessing
and leveraging threat intelligence on IoT network threats that target
consumer environments. Motivated by this, this work presents
MUDscope, a tool implementing a novel approach to monitor and
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analyze malicious IoT traffic in consumer environments. Asserting
on a timely basis what specific devices and deployments are targeted
by similar or different network anomalies, MUDscope has the aim
to provide contextual information on how threats spread through
IoT deployments.

Our approach leverages the recent IETF [25] Manufacturer Us-
age Description (MUD) specification [30]. MUD allows vendors to
whitelist traffic for their devices, ensuring that any non-whitelisted
traffic can safely be rejected. MUD is an effort to improve the se-
curity of IoT with a specification-based approach. Previous work
has shown the effectiveness of MUD profiles to filter malicious IoT
traffic [19–22]. In brief, all traffic that is not whitelisted in MUD
profiles is thus necessarily anomalous.

Our approach builds on MUD profiles and uses the specifica-
tion in a novel way to analyze MUD-rejected traffic (MRT) and
generate previously-unavailable threat intelligence. For a specific
device in a deployment, we monitor its MRT, we cluster rejected
traffic flows showing similar features, and we describe how these
clusters evolve in time. The evolution of these clusters provides a
signature for anomalous activities related to an IoT device. Similar
signatures represent similar malicious activities from a network
threat. We compare signatures collected from multiple devices to
gather insights on IoT network anomalies and how they spread
through loosely-protected environments.

We validateMUDscope with six IoT devices from different cat-
egories and brands. We target them with different scanning and
Denial of Service (DoS) attacks, collect and generate signatures of
MUD-rejected traffic, and show that we can detect when similar or
different network threats reach multiple devices. This information
can be provided to manufacturers of targeted IoT products and de-
ployments, and to the research community, prompting investigation
and response.

In summary, we make the following contributions:
• Wepropose a new approach formonitoring IoT-related traffic
that leverages the MUD specification to reveal malicious
connections. This operates as an IoT-specialized network
telescope requiring minimal configuration.

• We implement our approach inMUDscope, a tool that gen-
erates attack signatures describing the behavior of clustered
anomalous network flows over time.

• We evaluate MUDscope on our new, open-source, dataset
containing multiple IoT devices from different categories and
brands. Our experiments show that MUDscope can charac-
terize malicious network traffic with an F1-score of 87.72%.

In the spirit of open science, wemakeMUDscope open-source [40],
as well as the datasets generated and used for our evaluation [41].

2 THREAT MODEL

Cyber attackers are actively engaged in compromising exposed IoT
devices [43, 59, 62]. Of the targeted devices, over half are deployed
within ISPs and telecommunications sectors [42, 65]. This points to
devices deployed in loosely-protected environments such as house-
holds and home offices. These environments lack managed security
capabilities such as intrusion detection systems and security op-
eration centers. The devices that they host are thus more easily
reached by network threats [66].

End System Network
Deployment-device 

MRT feed
IoT device

MUD Profile

MUD 
Services

MRT 
collection

MRT files and  
Deployment Metadata

MRT 
 characterisation

correlation of multiple
MRT feeds

over time windows

MUD-authorised traffic

MUD-rejected traffic (MRT)

Bootstrapped

MUD 
Flow 
Rules

device-specific

(0)

(1)

(2)

(3) (4)

(5)

Figure 1: High-level schematic for the proposed MUD usage.

(0) The local environment retrieves MUD profiles and flow

rules; (1) we enforce MUD rules on device-related traffic; (2)

we save the MUD-Rejected Traffic (MRT); (3) we describe how

the MRT evolves through time; (4) we save the description in

an MRT feed; (5) we compare multiple MRT feeds to observe

fluctuations for different IoT devices.

In this threat model,MUDscope is designed to detect anomalous
IoT network activities affecting devices in loosely-protected envi-
ronments. We focus our research on consumer IoT devices (e.g., IP
cameras, motion sensors, smart appliances, smart plugs, etc.) that
communicate over the Internet via UDP/TCP-IP stack. We address
external network threats, such as botnets, that attempt to gain con-
trol of IoT devices via reconnaissance (active scanning) and initial
access tactics, as per MITRE ATT&CK kill-chain [38].

The MUD specification is still not widely adopted by vendors,
though active engagement from standardization bodies, industry,
and research is manifested [44]. In our research, we assume that
MUD profiles are available, and readily deployable as OpenFlow
rules [46] (forwarding rules for the allowed UDP/TCP flows associ-
ated to the MUD rules), as per indication of the MUD specification.
To satisfy this assumption, we rely on MUDgee [22] to create MUD
profiles. Finally, we assume that the integrity of deployed MUD
profiles has been verified by a trusted component.

3 METHODOLOGY

Figure 1 presents a high-level scheme of our approach. OpenFlow
rules derived from a MUD profile are available in the local environ-
ment (step 0). In step 1, we collect device-specific packets rejected
by the MUD rules, namely, the MUD-Rejected Traffic (MRT). In
step 2, we record MRT packet logs divided in time windows. In
step 3, we describe anomalous traffic at each time window: we
collect traffic flows and cluster them together, obtaining a high-
level representation of anomalies through that given time window.
In step 4, we create traffic signatures by describing how clusters
of anomalous flows change through time windows. We refer to
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Figure 2: Pipeline for our MUD usage proposal. The sequence

of steps of our pipeline is detailed for the time window 𝑡1.
One color codifies one device.

these descriptions as MRT feeds. These feeds contain signatures
of recorded anomalous activities. Finally, in step 5, we compare
signatures from multiple MRT feeds to detect emerging similar
attack patterns.

Note that all the steps in the pipeline are specific to one de-
vice in one deployment, up to the comparison of traffic signatures
from multiple devices. We explain these steps referring to Figure 2,
presenting the pipeline of our approach in greater detail.

3.1 MUD profiles enforcement

Our approach starts from MUD profiles available for devices within
a loosely-protected environment. In accordance with the MUD spec-
ification, the whitelist rules in a MUD profile have been translated
into actionable networking rules [30] — in our case, an OpenFlow ta-
ble. OpenFlow is a protocol to control packet forwarding in switches
or routers in a software-defined (i.e., programmable) network [7],
and is often coupledwith IoT [63]. MUD rules are therefore enforced
at local level via network flow rules.

Throughout a time window 𝑡𝑎 , we filter device-specific network
packets against the device’s MUD profile rules. Non-matching pack-
ets are appended to a network log (a pcap) file. We then convert
the rejected packets in 𝑡𝑎 to netflow [6] flows format to constrain
the size of the MRT logs. These operations correspond to steps 1, 2
and 3 in Figure 2.

3.2 Time window anomalies characterization

MUD-Rejected Traffic is anomalous by manufacturer definition. In
general, we expect that collected MRT flows belong to certain cate-
gories of anomalous traffic, such as host-discovery probes, targeted
scans, credentials brute-forcing, DoS traffic, advertisement-related
probes, Internet noise [51]. Moreover, different threat actors may
attempt to compromise new hosts using signature routines [16, 17].
For instance, MIRAI targets a victim device via (1) scanning TCP
ports 23 and 2323, (2) brute-forcing Telnet credentials, (3) injecting
code upon access to the device [2]. Our approach is primarily aimed
at detecting when several devices are targeted by similar anomalies
underlying similar attack routines.

We make two observations: (i) the same type of malicious ac-
tivities, observed through one time window 𝑡𝑎 , will likely yield
similar MRT profile; (ii) the same attack routine will yield a similar
sequence of anomalous activities observed through multiple time
windows.

We thus adopt the following approach to group together flows
belonging to similar malicious traffic. We first conducted a pre-
liminary analysis on a dataset for IoT network intrusion detection
(Kang et al. [28]) to select the flow features that most discern IoT
network attacks. That the flow features (i) bytes-per-packet, (ii)
TCP flags, (iii) input and (iv) output bytes, (v) destination port, and
(vi) source-address category (private, public, reserved) proved good
indicators to discern different IoT attack types (we report this anal-
ysis in Section 6.2). We use these features to cluster together similar
anomalous flows observed through a window 𝑡𝑎 (step 5 in Figure
2). We choose HDBSCAN [34] as clustering algorithm due to its time
performance and generalizing approach [34, 35], which suits the
dynamic and unknown nature of network traffic [18].

We describe the ensemble of observed anomalous flows in 𝑡𝑎 by
means of the characteristics of the clusters space, i.e., the number
of observed clusters and their positions. Specifically, we describe
the clusters’ positions with the list of their meta-centroids. A meta-
centroid of a cluster is a point defined as follows: one dimension
per average value of the flow feature of all points in the cluster; plus
two meta-dimensions for average and standard deviation values
of between-cluster points distances. A meta-centroid is thus 𝑛 + 2-
dimensional, with𝑛 = number of MRT flow features (six in our case).
We add the last two dimensions to have a more robust notion of the
identity of a cluster. For instance, in two different time windows,
two clusters may appear in similarly-centered regions, but present
flows with different features. The meta-dimensions allow us to
capture this difference.

Finally, the MRT for a device observed through a window 𝑡𝑎 is
represented by the set of (𝑛+2)-dimensional clusters meta-centroid
points𝐶𝑎 : {𝑐𝑎

𝑖
: 𝑖 = 0, ..., |𝐶𝑎 |} — a characterization, step 6 in Figure

2 — with 𝑐𝑎
𝑖
the meta-centroid of the cluster 𝑖 , for the clustering

performed in the time window 𝑎.

3.3 Anomaly signature

Thus far, we collected the MRT for a specific device, in one given
time window. We then distinguished different clusters in this traffic,
with the notion that each attack is represented by one or more
clusters. We now want to describe how the positions of the clusters
change through successive time windows to track how an attack
evolves. The track of the changes in the clusters space constitutes
the signature of an anomalous event.

We consider the general case of two successive characterizations:
𝐶𝑎 : {𝑐𝑎

𝑖
, 𝑖 = 0, ..., |𝐶𝑎 |}, over 𝑡𝑎 , and 𝐶𝑏 : {𝑐𝑏

𝑗
, 𝑗 = 0, ..., |𝐶𝑏 |}, over

𝑡𝑏 . We assume that 𝑡𝑎 precedes 𝑡𝑏 , i.e., the end-time of 𝑡𝑎 comes
before the start-time of 𝑡𝑏 : 𝑡𝑎_𝑠𝑡𝑎𝑟𝑡 ≤ 𝑡𝑎_𝑒𝑛𝑑 ≤ 𝑡𝑏_𝑠𝑡𝑎𝑟𝑡 ≤ 𝑡𝑏_𝑒𝑛𝑑 .

We compute the distance matrix𝑀 between pairwise clusters,
where 𝑀 [𝑖, 𝑗] = dist(𝑐𝑎

𝑖
, 𝑐𝑏

𝑗
), 𝑖 = 0, ..., |𝐶𝑎 |, 𝑗 = 0, ..., |𝐶𝑏 |. Note that

row indices correspond to clusters in 𝐶𝑎 , and column indices to
clusters in 𝐶𝑏 . We observe what clusters appear closest in space
across the two different time windows, and define three match cases
that describe shifts, splits, and merges of clusters.
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clusters space through two time windows. The clusters space

is simplified to two generic dimensions. We describe the

dynamic behavior of anomalies bymeans ofmutual, forward,

and backward match cases.

The cluster 𝑐𝑎
𝑖
∈ 𝐶𝑎 forward-matches with the cluster 𝑐𝑏

𝑗
∈ 𝐶𝑏 if

𝑐𝑎
𝑖
is closest to 𝑐𝑏

𝑗
among all clusters in the future characterization

𝐶𝑏 . Analytically,𝑚fwd (𝑐𝑎𝑖 ) = 𝑐𝑏
𝑗
⇐⇒

𝑐𝑏𝑗 = argmin𝑗=0,..., |𝐶𝑏 | (dist(𝑐
𝑎
𝑖 , 𝑐

𝑏
𝑗 )) .

Similarly, a cluster 𝑐𝑏
𝑗
backward-matches with 𝑐𝑎

𝑖
when the cluster

𝑐𝑏
𝑗
in the new time window is closest to the cluster 𝑐𝑎

𝑖
from the

previous characterization 𝐶𝑎 . We say𝑚bwd (𝑐𝑏𝑗 ) = 𝑐𝑎
𝑖

⇐⇒

𝑐𝑎𝑖 = argmin𝑖=0,..., |𝐶𝑎 | (dist(𝑐
𝑎
𝑖 , 𝑐

𝑏
𝑗 )) .

A mutual match between 𝑐𝑎
𝑖
and 𝑐𝑏

𝑗
, for fixed 𝑖 and 𝑗 , occurs when

𝑚fwd (𝑐𝑎𝑖 ) = 𝑐𝑏𝑗 ∧𝑚bwd (𝑐𝑏𝑗 ) = 𝑐𝑎𝑖 .

Forward matches are only defined from 𝐶𝑎 to 𝐶𝑏 , and backward
matches are only defined from 𝐶𝑏 to 𝐶𝑎 .

Figure 3 illustrates the clusters space in two consecutive charac-
terizations. Clusters 𝑐𝑎

𝑖
, 𝑐𝑎

𝑗
, merge in 𝑐𝑏

𝑖
. They trigger one forward-

match, and one mutual-match. Cluster 𝑐𝑎
𝑘
splits in two clusters

𝑐𝑏
𝑗
, 𝑐𝑏
𝑘
, and triggers one mutual-match and one backward-match.

Cluster 𝑐𝑎
𝑙
shifts to the position of 𝑐𝑏

𝑙
, triggering a mutual-match.

The two distance matrices in Table 1 show two examples of
clusters evolution, generated with our implementation (see Section
4). In the first matrix, we see a relatively stable evolution: just one
new cluster (𝑐𝑏3 ) appears at a very short distance from the existing
ones. In the second matrix, the high agglomeration of forward
matches highlights a merge of clusters to 𝑐𝑎3 , 𝑐

𝑎
5 , and 𝑐

𝑎
6 , to 𝑐

𝑏
3 . We

illustrate how network anomalies relate to these descriptions of
clusters evolution in Section 3.3.2.

3.3.1 Signature definition. Using the three defined match cases we
derive ten features to describe the evolution of the MRT through
consecutive characterizations 𝐶𝑎 and 𝐶𝑏 : (1) balance of gained-to-
lost clusters (clusters balance), to track the number of clusters

Cb

Ca 0 1 2 3 4

0 0.020858 2.419684 2.405222 2.403964 2.403957
1 2.416821 0.001128 0.281784 0.277283 0.277189
2 2.402623 0.281764 0.001103 0.052307 0.052008
3 2.400945 0.277189 0.051946 0.003871 0.001101
4 2.400944 0.277154 0.051893 0.006378 0.002798

Cb

Ca 0 1 2

0 3.019654 3.596038 3.825001
1 0.354194 2.373034 2.351585
2 2.495640 0.162561 0.352583
3 2.464904 0.412329 0.247349
4 2.399984 0.330156 0.099545
5 2.564678 0.501293 0.412108

Table 1: Two scenarios exemplifying cases of mutual ,

forward, and backward matches for clusters over consec-

utive time windows, extracted from our tool. Above, MUD-

rejected traffic is relatively stable from 𝐶𝑎 to 𝐶𝑏 : only one

backward match at a very close distance is recorded. Below,

forward matches show merges of clusters in 𝑐𝑏0 and 𝑐𝑏2 .

observed over time; (2) average of all distances over the distance
matrix of meta-centers (all dists avg), describing how spread
clusters are; (3) mutual matches n, the number of mutual-match
cases; similarly, (4) backward matches n and (5) forward matches
n. We account for the respective percentage of match events of
each type over all match events: (6) mutual matches percentage,
(7) backward matches percentage, and (8) forward matches
percentage, to record the relative share of each match type. Fi-
nally, (9) bwd matches agglomeration avg and (10) fwd matches
agglomeration avg indicate over how many clusters on average
forward and backward matches agglomerate, capturing the volume
of splits and shifts of single clusters.

We synthesize these features with the assumption that they
achieve a high-level description of a transition between two MRT
cluster spaces. We evaluate their effectiveness in Section 6.1.

For consecutive pairwise characterizations of MRT, we compute
and write these features to MRT transition entries (step 7 in Figure 2).
Each entry describes how anomalous traffic changes through two
time windows. The sequence of MRT transition entries constitute
an MRT feed (step 8 in Figure 2) spanning from the start-time of
the first window to the end-time of the last window.

With this definition, the signature of an anomaly can be repre-
sented by a segment of an MRT feed. This is an 𝐹 = [𝑁,𝑀] matrix,
where 𝑁 is the number of MRT transition entries through which
the anomaly spans, and𝑀 is the number of signature features con-
sidered in the signature. A column of 𝐹 [:, 𝑗] represents the values
of the signature feature 𝑗 through the time span where anomalous
activity occurs. We denote the 𝑖th signature in a feed 𝑋 as 𝐹𝑋

𝑖
.

3.3.2 Expected behavior. If a device is subject to anomalous but
harmless noise [48], over time, we expect the values of the features
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(i.e., columns) in its MRT feed to show little variation. The number
of clusters will remain stable, and the percentage of mutual matches
will stay close to 100%.

A new network event would generate new clusters, increasing
the clusters balance, and the backward matches. The backward
match agglomeration will also increase, because previous clusters
are expected to mutually match. If an anomaly ceases, then the
number of clusters will reduce in the next characterization, and
forward matches will increase — corresponding to the previously
existing clusters pointing ahead toward the remaining clusters.

3.4 Comparison of MRT feeds

A network threat using the same attacks to compromise different
IoT devices will cause similar fluctuations in the MRT feeds of the
respective devices. To detect this (step 9 in Figure 2), we perform
the following three steps. First, we take the MRT feeds of the de-
vices we are interested in monitoring, over arbitrary time periods.
Second, we detect if and where anomalous traffic occurs in the feed,
by observing if any MRT is captured in any time window in the
first place. This is reflected in the signature feature reporting the
clusters’ balance through time windows. Doing so, we automati-
cally gather the signature for any anomaly recorded in each feed.
Third, we compare all anomaly signatures, pairwise. If the length
of the signatures 𝑁 is different, we compare the smaller signature
with equally-sized sliding windows on the larger signature, and we
record the values for the highest similarity found. In particular, for
any two signatures 𝐹𝑋𝑛 and 𝐹𝑌𝑚 , we compute the Pearson correlation
coefficient 𝑟 𝑗 for each two column vectors of the same feature 𝑗 , to
observe if their values change in a similar way. The average value of
𝑟 for all features is the correlation 𝑐 of the two signatures, i.e., how
similar is the trend of the anomalous activity captured between the
two signatures. Analytically,

𝑐 (𝐹𝑋𝑛 , 𝐹𝑌𝑚) = 1
𝑀

∑︁
𝑗 ∈features

(
𝑟 𝑗 = 𝑟 (𝐹𝑋𝑛 [:, 𝑗], 𝐹𝑌𝑚 [:, 𝑗])

)
,

where𝑀 is the number of MRT feed signature features considered.
To capture the case where 𝑐 returns a low value despite some

signature features showing high correlation, we also record the
maximum value of 𝑟 over all features:𝑚(𝐹𝑋𝑛 , 𝐹𝑌𝑚) = max𝑗 ∈features 𝑟 𝑗 .
Additionally, to make our alerting method robust to comparing sig-
natures from different attacks but with similar trends, we record the
proportion 𝑝 between ranges of the number of clusters generated
by the two signatures, expressed as Ra𝑋𝑛 and Ra𝑌𝑚 :

𝑝 (𝐹
𝑋
𝑛 , 𝐹𝑌𝑚) = min (Ra𝑋𝑛 , Ra𝑌𝑚)

max (Ra𝑋𝑛 , Ra𝑌𝑚)
.

We then use these values to compute the signature match value:

𝑎(𝐹𝑋𝑛 , 𝐹𝑌𝑚) = avg(𝑐 (𝐹𝑋𝑛 , 𝐹𝑌𝑚), 𝑚(𝐹𝑋𝑛 , 𝐹𝑌𝑚)) ∗ 𝜉,
where 𝜉 is a slack variable that constrains the value of the alert
based on 𝑝 (𝐹𝑋𝑛 , 𝐹𝑌𝑚), and is defined as follows:

𝜉 = 𝑝 (𝐹𝑋𝑛 , 𝐹𝑌𝑚) if 𝑝 (𝐹𝑋𝑛 , 𝐹𝑌𝑚) ≤ 0.5, else 1.

A match alert is prompted when 𝑎(𝐹𝑋𝑛 , 𝐹𝑌𝑚) is greater than a
given threshold, chosen to be 0.5, to capture the case where only
one signature feature correlates perfectly. Further approaches can
be investigated in follow-up work.

4 IMPLEMENTATION

For our proof-of-concept, we generate MUD profiles and related
OpenFlow rules with MUDgee [22]. We collect local network traf-
fic using Wireshark [71]. We divide such collected traffic in time
window pcaps, according to our methodology, using tcpdump [64].
These pcaps are then fed to MUDscope, our tool. MUDscope is
implemented in Python 3.8. We use Python’s Scapy [56], a net-
work packet manipulation library, to match device-specific packets
against MUD flow rules, and generate the MRT pcap files. Packets
files are aggregated into network flows in Comma-Separated Value
(CSV) files, using nfdump [67].

From an MRT flow file, we select the attack-discriminating flow
features (Sections 3.2 and 6.2), which we pre-process with the
Sklearn library [58] to quantify and scale to apply clustering.We use
the HDBSCAN python implementation [34] to produce the clustering
characterization for each MRT flow file, as explained in Section 3.2.

For consecutive characterizations, we compute distance matrices
among clusters’ meta-centroids with Numpy’s [45] euclidean dis-
tance function. From these matrices, we extract the MRT evolution
signatures indicators presented in Section 3.3.1, mapping the se-
quential change of characterization in an MRT transition entry. We
build an MRT feed CSV file by appending consecutive such entries.

Finally, we implement an MRT feed monitor module that ingests
an arbitrary number of feeds, extracts anomaly signatures, and
compares the similarities between signature metrics using Numpy’s
Pearson correlation index corrcoef. We recall thatMUDscope is
provided as open-source [40].

5 DATASETS

We evaluate our approach on both the existing IoT Network In-
trusion Dataset by Kang et al. [28] and on our openly available
MUDscope IoT dataset [41].

IoT Network Intrusion Dataset. Kang et al. [28] provide a
dataset containing 42 raw network traces spanning 9 attacks and
benign traces (2.99M packets) of two different smart home devices
(a Nugu smart speaker and gan EZVIZ wi-fi camera) captured over a
(non-continuous) period of 112 days. The attacks include scanning
(host, port, and OS) using Nmap; flooding (SYN, UDP, ACK and
HTTP) using custom scripts and MIRAI botnet attacks; and Host
discovery and Telnet brute-force attacks using the MIRAI botnet.
The original dataset also contains MITM ARP spoofing attacks,
but are considered out of scope for this research. The IoT Network
Intrusion Dataset is used for parameter optimization of our method
(Sections 6.2 and 6.3). Appendix B gives an overview of the dataset.

MUDscope IoT dataset. We collect our own dataset (see Ta-
ble 2), produced using the Federated IoT Laboratory [37]. In the
dataset, we attack heterogeneous IoT devices deployed at the Eind-
hoven University of Technology, tagged L1. The deployed devices
are: Eufy security homeBase 2 doorbell, Honeywell thermostat,
two different Foscam IP cameras (models C1780P and RM2), and
two Hombli smart plugs. We deploy an attacking computer in a
different subnet at a second geographical location, TNO The Hague,
tagged L2. The dataset consists of raw network traces for the six
IoT devices containing both benign data and scanning attacks (Tel-
net SSH port scan, OS discovery, and Vulnerability scan) as well
as targeted (hence only two devices) DoS TCP SYN-flood attacks.
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Attack Duration # Flows # Packets # Devices

None (Benign) 1,462.93 s 627 76,055 5
Telnet/SSH port scan 1,663.82 s 424 4,815 5
OS scan 2,854.25 s 10,145 24,371 5
Vulnerability scan 3,815.83 s 3,091 14,801 5
TCP SYN flood DoS 2,131.20 s 135,472 395,771 2

Table 2: Details of MUDscope IoT dataset. For each attack

scenario, we specify the capture duration, total number of

flows, packets, and number of involved devices.

Device No. Scans DoS

type devices Telnet/SSH OS Vulnerabilities SYN flood

Eufy HomeBase 2 doorbell 1 ✗ ✗ ✗Honeywell Round
T57RF2025 thermostat 1 ✗ ✗ ✗

Hombli smart plug 2 ✗ ✗ ✗HBPP-0201
Foscam C1780P IP camera 1 ✗ ✗ ✗ ✗

Foscam RM2 IP camera 1 ✗

Table 3: Description of the devices utilized for the data col-

lection, and the attacks performed on them.

Table 3 summarizes the devices and attack scenarios recorded in
the dataset. Section 6.1.1 describes the procedure we used to gener-
ate the dataset. By capturing these various attacks over multiple
devices in various locations and from different vendors, we attempt
to show that our approach can correlate similar attacks in differing
scenarios (Section 6.1).

6 EVALUATION

The main objective of our approach is to detect attacks on IoT
devices and create respective signatures that can be used to identify
emerging common attacks. Tables 4, 5, and 6 give an overview of
our main results for detection and signature comparison (details in
Section 6.1) over ourMUDscope IoT dataset.

To obtain these results, we first used the Kang dataset to system-
atically analyze which features are most relevant for generating
signatures (Section 6.2), and to perform an intermediate analysis
on the clusters generated by our approach (Section 6.3).

In this Section, we report the main validation for MUDscope in
6.1. We then report the analyses performed to develop our tool, in
Sections 6.2 and 6.3.

6.1 Signature matching

We aim to ascertain whether and when multiple IoT devices have
been targeted by the same network threat. To this end, MUDscope
correlates signature fluctuations of the MRT. To evaluate the extent
to which these signatures are correctly correlated, we perform
several experiments on six IoT devices. The network traces for the
experiment we run constitute ourMUDscope IoT dataset, as we
describe in Section 5.

6.1.1 Experimental setup. We performed four experiments. In each
of them, we start a packet capture at L1, then target a subset of the
devices asynchronously with a given attack from L2, and stop the
capture. The attacks that we launched are the following: (1) scan

10

0

10
l1-foscam-cam2

0 5 10 15 20 25 30 35

10

0

10
l1-foscam-cam

Figure 4: Anomaly signature fluctuations for the clusters
balance feature, for the two Foscam cameras attacked with

DoS traffic. The Y axes report the ranges of the clusters bal-

ance values. The X axis refers to the MRT transition entries.

of Telnet and SSH ports, (2) nmap OS discovery scan, (3) a time-
spread nmap vulnerabilities testing scan, and (4) TCP SYN flood
DoS. For the three scanning experiments, we left the RM2 Foscam
camera unharmed to have a control recording. In the targeted DoS
experiment, we attacked both Foscam cameras, and left the other
devices unharmed.

We obtain one general capture per experiment, and process each
with MUDscope, for each device’s MUD profile. We so obtain four
MRT feeds per device — one per experiment. We expect that each
MRT feed contains the signature of the attack performed in the
relative experiment. Next, for each experiment, we extract the sig-
natures in each related MRT feed for each device, and verify if
the malicious traffic was captured. Table 4 shows the detection
performance based on signatures-finding in the MUDscope IoT
dataset. As shown, we correctly identified all anomalies underly-
ing attacks (100.00% recall) and incorrectly identified 9 anomalies
(91.89% precision).

Next, we want to validate that signatures from the same attacks
match with each other, but not with signatures from different at-
tacks. Therefore, we run two sets of experiments. First, we check
whether the signatures from the same attack correlate among all
attacked devices. We report the overall results of this validation in
Table 5. There, we see that although there is a complete overlap of
all signatures for simple attacks, such as the Telnet/SSH port scan,
more device-interactive attacks (e.g., OS scan) report some False
Negatives (we explain below in Section 6.1.2).

Second, to validate that signatures from different attacks do not
match, we perform six tests as follows: for each of five devices (all
except the FoscamRM2), we compare all of itsMRT feeds containing
an attack. In the sixth test, we compare the MRT feeds from four
different devices (one Hombli plug, the Honeywell thermostat, the
Eufy HomeBase, and the Foscam RM2), each with a different attack.
We report the overall results of this second validation in Table 6.
We publish the complete set of outputs of our results at [40].

6.1.2 Same-attacks signatures matching. As shown in Table 6, we
detect all Telnet and SSH port scans directed to each device, and find
correlations between all signatures. Because the attack consists only
of four flows, directed to ports 22, 23, 2222, and 2323, the produced
fluctuations in the MRT feeds are minimal. We thus detect signature
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Attack MRT entries Anomalous entries TP TN FP FN Accuracy Precision Recall F1-score

Telnet/SSH port scan 130 15 15 115 0 0 100.00% 100.00% 100.00% 100.00%
OS scan 217 26 26 191 0 0 100.00% 100.00% 100.00% 100.00%
Vulnerability scan 310 48 45 259 3 0 98.06% 93.75% 100.00% 96.77%
TCP SYN flood DoS 170 22 16 142 6 0 96.47% 72.73% 100.00% 84.21%

Total 827 111 102 707 9 0 98.90% 91.89% 100.00% 95.77%
Table 4: Performance of anomaly detector over Novel IoT Dataset. We report the performance in terms of number of True/False

Positive/Negative detected MRT entries as well as the Accuracy, Precision, Recall, and F1-score of our anomaly detector.

Total Expected

Attack signatures matches TP TN* FP FN Accuracy Precision Recall F1-score

Telnet/SSH port scan 5 10 10 N/A* 0 0 100.00% 100.00% 100.00% 100.00%
OS scan 5 10 6 N/A* 0 4 60.00% 100.00% 60.00% 75.00%
Vulnerability scan 5 10 8 N/A* 0 2 80.00% 100.00% 80.00% 88.89%
TCP SYN flood DoS 2 1 1 N/A* 1 0 50.00% 50.00% 100.00% 66.67%

Total 17 31 25 N/A* 1 6 78.13% 96.15% 80.65% 87.72%
*This experiment compared found anomalies only of the same attack type, hence the True Negatives are 0. Table 6 shows the results when comparing
signatures of different attacks.
Table 5: Evaluation matching attack signatures. We show for each attack, whether our signature matching algorithm found a

match between signatures of the same attack.

Test Device(s)

Compared Incorrect matches

MRT feeds Expected Worst Found

1 Eufy home-kit doorbell
Scans

(Telnet/SSH, OS,
Vulnerabilities)

0 3 0
2 Honeywell thermostat 0 3 0
3 Hombli plug 1 0 3 0
4 Hombli plug 2 0 3 0

5 Foscam camera C1780P All 0 6 1
6 Eufy, Honeywell, Hombli, Foscam All 0 6 0

Overall 0 18 1

Matches correctly discarded 94.44%

Table 6: Summary of the tests executed for the signature-

matching for different attacks. We expect no matches at each

test, because we are comparing signatures from different

attacks. In the worst case, we find that all signatures match

with one another. For these tests, ourmethod proved effective

in not raising match alerts for different attacks.

matches only by means of the clusters balance metric, which
shows perfect correlation for this attack, while values for the other
nine metrics in the extracted signatures are flat. The non-attacked
RM2 Foscam camera does not record anomalies, as expected.

For the OS scan attack, we detect all anomalous flows. We ver-
ified that recorded false-positive anomalies are caused simply by
benign packets that the MUDgee tool failed to include in the gen-
erated MUD profiles. We find all signature matches between all
devices except the Foscam camera C1780P, thus returning six out of
ten matches. This occurs because, differently from the other four de-
vices, the Foscam camera engaged minimally with the OS scan, thus
its MRT produced a different signature. This provides the insight
that anomaly signatures for the same attack can vary depending
on how the devices react, and can thus be device-specific.

We detect all anomalies in the slow vulnerability scan experiment.
False positive anomalies appear for the same reason as above. We
detect eight out of ten matches, leaving out the match among Eufy
and Honeywell, and Honeywell and one of the two Hombli plugs.
Interestingly, all matching signatures correlate poorly (with an
overall average of 0.33), but we are still able to detect the matches
with our method, because of high maximum correlation values (0.9
on average), and comparable magnitude of generated clusters.

We detect both DoS attacks in the fourth experiment. Again,
recorded false-positives are due to benign packets that were not
included in the MUD profile, and barely generate a match on their
signatures. Most importantly, the signatures of the two DoS at-
tacks are strongly correlated over all signature features (average of
0.86). Figure 4 depicts the plot for the fluctuations of the clusters
balance signature feature for the two Foscam cameras. For this
experiment, we also report in Appendix E the anomalies correlation
values over all features.

6.1.3 Different-attacks signatures matching. As shown in Table 6,
as for the tests performed, our signature-matching method effec-
tively discerns different attacks, and does not raise match alerts
in the very most of the cases. The only one false-positive match,
reported among Foscam camera’s signatures, regards the Telnet
SSH scan, and a false-positive anomaly recorded during the vul-
nerability scan experiment. The average correlation value for the
false-positive matching signature features scores relatively low, i.e.,
0.13, suggesting again that the two signatures are different. Though,
the match is recorded because of similar magnitude of produced
clusters, and a perfect correlation on the clusters balance feature,
for those minimal fluctuations.
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Attack label No. rejected flows rejected % of total flows

dos-synflood 44,547 63.19%
unknown 10,413 14.76%
mirai-ackflood 7,659 10.85%
scan 5,815 8.24%
mirai-httpflood 1,737 2.47%
mirai-udpflood 223 < 0.01%
mirai-brutefrc-atk 94 < 0.01%
mirai-brutefrc-vict 59 < 0.01%

Total 70,547 -

Table 7: Layout of custom MRT flows dataset derived from

Ezviz attack scenarios in Kang et al. [28].

6.2 Flow Feature Selection

We use The IoT Network Intrusion Dataset by Kang et al. [28] to
understand what flow features help the most in discerning different
IoT network attack types. We first generate a MUD profile for
the Ezviz camera using the benign traffic, and filter all anomalous
traffic from the attack scenarios. Besides filtering most malicious
packets (99.7%, with 91.3% on average for each attack scenario),
noise traffic (i.e., local network traffic, and packets from Amazon,
Google, Microsoft, and alike) is also filtered, to which we assign the
label unknown. Appendix C displays the outcome of this step.

We merge the MRT from all scenarios, and convert it to flows
labeled according to the attack they implement. Table 7 presents
the resulting labeled dataset. Each flow is described via the set of
NetFlow features reported in Appendix A.We compute the Adjusted
Mutual Information (AMI) score [70] of each flow feature with
respect to the attack labels. AMI is a robust metric in the presence
of unbalanced classes, as is the case in the dataset. For two variables,
AMI measures how the entropy of one variable 𝑋 is reduced once
the value of the other variable𝑌 is known. A high AMI score means
that 𝑋 is useful in determining the value of 𝑌 (refer to Appendix F).

Table 8 presents a list of top-scoring features and their descrip-
tion. Note that we resolved IP addresses to a category label among
private, public, reserved, broadcast, not to bias the AMI score with
specific IPs. We discard opkt and ipkt because they are necessarily
correlated with the higher-scoring bpp, ibyt, and obyt. Besides,
we choose sa instead of da because we are more interested in
discerning anomalous traffic based on sources, rather than targets.

6.3 Clusters analysis

We cluster flows together based on the features from Section 6.2.
Here, the intuition is that flows related to an attack present similar
characteristics and can therefore be grouped into clusters. We can
evaluate to what extent our mechanism creates clusters containing
the same attack (class) using the homogeneity [52] score h. An
homogeneity score of 1 indicates that, for each cluster, all sam-
ples belong to the same class; vice versa, ℎ = 0 when all clusters
only contain samples of different classes. Besides computing the
homogeneity score, we want to minimize the number of produced
clusters in relation to the present anomalies. The reason is that one
flow per cluster would discern all anomalies and therefore give a
perfect homogeneity score of 1, but will not be meaningful as a
cluster. To illustrate, an incoming distributed DoS produces a high

Feature Description AMI score

bpp bytes per packet 0.630
flgs_int int value of flags bits array 0.585
da destination address 0.518
obyt output bytes 0.468
ibyt input bytes 0.456
dp destination port 0.414
opkt output packets 0.456
sa source address 0.387
ipkt input packets 0.307

Table 8: Selected features and their AMI scores with respect to

the attack label. We discard opkt and ipkt because correlated
with the higher-scoring bpp, ibyt, and obyt. We discard da in

favor of sa because the source of anomalous traffic is more

relevant to our detection approach than the destination.

number of distinct flows, but it should ideally yield a single, or at
least a small number of clusters.

We use the MRT flows dataset for the Ezviz device (Table 7)
to perform a grid-search on HDBSCAN’s standard parameters min_
cluster_size and min_samples [34] to find a local maximum for
homogeneity, and minimum for the amount of yielded clusters.
We achieve the best results (ℎ = 0.866 and 11 clusters over the
eight attack labels) when min_cluster_size = 1.2% the size of the
dataset, and min_samples = 0.2% the size of min_cluster_size.
On our dataset, this configuration also produces just 0.04% noise
points. Table 9 lists the clustering results per produced clusters.

As shown in Table 10, the very most of the flows (93.18% on
average) from all attacks except mirai brute-force and UDP flooding
scenarios are part of clusters where their share is most represented
(as per Table 9). This happens because, when running the cluster-
ing on the whole dataset, min_cluster_size’s value was selected
greater than the size of brute-force and UDP-flooding classes, which
are therefore undetected.We thus also run the clustering on a subset
of the dataset containing only brute-force and udp-flooding scenar-
ios, and we observe that the clustering produces usable results in
this case well. We report these results in Appendix D.

Overall, these results show that our tool effectively groups anoma-
lous flows of the same type in distinct clusters with high homogene-
ity. The sensitivity to different anomalous events yields a descriptive
set of clusters to characterize the MRT at each time window.

7 DISCUSSION

Signature-matching results. For the experiments we performed,
our method could discern 96.15% of the cases when two anomalies
were from the same attack type, and 94.44% of the cases when anom-
alies were from different attack types. Note that our experimental
procedure included network attacks to devices ranging from four
packets (the Telnet SSH ports scan), to tens of thousands of packets
(the DoS attacks), as well as a more time-spread scan (the slow vul-
nerability scan). Therefore, our approach proved to be applicable
to different types of network anomalies.

Another interesting aspect is the amount of data generated by
our approach, for if a large organization or manufacturer monitors
many devices, storage may become a problem. As we report in
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Cluster Cluster size Most represented Share of most

ID in % MRT flows attack in cluster represented attack

0 2.27% dos-synflood 94.90%
1 11.00% unkown 100.00%
2 1.22% unknown 100.00%
3 1.66% dos-synflood 99.91%
4 2.43% dos-synflood 100.00%
5 56.16% dos-synflood 99.99%
6 10.87% mirai-ackflood 99.85%
7 1.26% mirai-httpflood 97.42%
8 2.43% scan 78.08%
9 5.85% scan 96.87%

-1 4.79% - -

Table 9: Clustering results over produced clusters. Noise

points map to cluster -1.

Table 5, the data generated by processing a capture of 30 minutes
for 6 devices (5 attacked, one unharmed), consists of 310 entries
for time windows of 30 seconds each. We store 8 bytes per column
value, with 20 columns per transition.

Therefore, for 2 MRT feed entries produced per minute, per
device, an MRT feed for 24 hours divided in 30 seconds windows
would yield a file of 27.65 MB size, which is reasonable to store in
the short term. Now, MRT feeds can be removed when an attack has
been investigated, and MRT feeds that do not capture anomalies
do not need to be stored at all. Moreover, it would be practical to
only store anomaly signatures, yielding even smaller files. Finally,
incoming anomalies could be matched on the fly against stored
signatures databases. While these file sizes are manageable for
smaller settings, we believe it is worth investigating the scalability
of this approach to larger-scale scenarios.

Methodology.Ourmethod clusters rejected flows in the attempt
of capturing a high-level and concise description of an anomaly.
Though we achieved this in the clustering evaluation, in our exper-
imental evaluation we observed that different anomalies produce
varying numbers of clusters — i.e., the (more volumetric) attacks
we launched were not represented by a single cluster, but instead
by multiple clusters. Though somewhat unexpected, this perfor-
mance does not affect the effectiveness of the approach: we define
a signature precisely through the evolution of the clusters’ space
(recall Section 3.3.1), and we showed that indeed we obtain different
signatures for different attacks. As this approach captures similar
and different attacks, it gathers additional and novel situational
awareness regarding network threats affecting consumer IoT de-
vices. Additionally, the proposed signature generation methodology
outputs anonymized data feeds, consumable by interested parties
without privacy concerns.

MUD adoption. As mentioned in Section 2, MUD profiles are
not yet widely adopted by IoT manufacturers, although research
and standardization bodies start to adopt MUD [9]. At the very least,
MUD contributes to specification-based security for IoT devices.
In turn, our work showcases an additional benefit that IoT man-
ufacturers could gain from adopting MUD, and integrating such
an approach. Adopting our solution, IoT vendors could monitor
in a privacy-preserving way how malicious activities target their
products. They could for instance detect when a particular model

Attack label Total
Represented in a cluster

No. flows % of flows

dos-synflood 44,547 44,038 98.85%
unknown 10,413 8,632 82.90%
mirai-ackflood 7,659 7,659 100.00%
scan 5,815 5,342 91.86%
mirai-httpflood 1,737 871 50.14%
mirai-udpflood 223 0 0.00%
mirai-brutefrc-atk 94 0 0.00%
mirai-brutefrc-vict 59 0 0.00%

Table 10: Percentage of flows that are part of a cluster where

their class is the most represented.

receives anomalous traffic from the same attack type at various
customers. Besides hinting at possible unknown vulnerabilities,
such threat intelligence would provide insights on attackers’ inter-
ests and trends, and promptly reveal the emergence of large-scale
malicious events such as new botnets.

Finally, note that MUDscope merely needs the NetFlow rules
derived from MUD profiles to be operational. In conclusion, our
results promote the use of MUD profiles to ascertain threat situa-
tional awareness for IoT devices. We believe these results motivate
further research in the threat-intelligence collection methodology
that we propose, and the exploration of others alike.

7.1 Limitations and future work

As our approach relies on MUD profiles for anomaly detection, it
inherits their limitations.MUDscope is not able to capture network
attacks that can evade MUD rules, such as vendor compromise,
man-in-the-middle, or spoofing attacks.

With respect to our signature-matching methodology, we ob-
served some limitations regarding the attacks that we can effec-
tively isolate and match. Anomalies such as a Telnet ports scan,
or one-packet Internet-wide scans, may all produce minimal MRT
fluctuations and highly similar signatures, making it hard to discern
these anomalies. Future work should investigate more advanced
methods to differentiate these anomalies. One method could regard
adding a signature feature recording the distance from the origin
of the clusters space, to observe where small clusters appear, as
related to the features of their flows. Additionally, it may be hard
to detect matches for attacks that are spread over a long period of
time, as they could generate intermittent small signatures. Future
work could develop a higher-level alerting module, performing
comparisons on sequences of signatures.

With the hypothesis of aMUDscope-aware attacker, we also note
that our signature-matching methodology could be circumvented,
e.g., by injecting noise traffic to a network attack, or mimicking sig-
natures of non-harmful or non-targeted anomalies. This would still
lead to a detection of the attack, but its signature will be unknown.

Finally, note that we could not validate MUDscope with authen-
tic MUD profiles, and we cannot therefore grant that the profiles
we generated are a perfect representation of authentic profiles.
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8 RELATEDWORK

IoT threat landscape monitoring. IoT honeypots and network
telescopes are two state-of-art approaches that mostly align with
MUDscope’s objective.

One widely appreciated contribution to IoT honeypots is IoT-
Pot [47]. With an adaptable backend, IoTPot studies Telnet-based
IoT attacks directed to 8 different CPU architectures. The authors
provide an analysis on the “scope and variety” of IoT Telnet attacks.
In 2018, Kamoen [27] builds upon the IoTPot custom-backend ap-
proach to further propose a stateful IoT honeypot (‘Honeytrack’),
able to maintain the status of the attack progress from a threat
agent, and re-present it to the agents upon their successive interac-
tions with the honeypot. Kamoen’s Honeytrack focuses specifically
on adversary behavior, studying how it evolves when a target is
compromised or weaponized. In 2020, Tabari and Ou [62] similarly
addresses the challenge of the “largely unknown nature of attack-
ers’ activities toward IoT”, proposing a honeypot whose interaction
is incrementally designed and integrated. They do so to understand
attackers’ specific interests, and thus interface simulated devices
with higher-chance of compromise. They deploy their honeypot in
12 worldwide-spanning locations. Another 2020 contribution, by
Wu et al., [72] proposes a controller architecture (‘ThingGate’) to
broker configuration and communication data for bare-metal IoT
honeypots. Their work is motivated by the need of studying IoT
attacks in greater detail through physical honeypots.

IoTPot and Honeytrack use darknets to gain preliminary results
suggesting what to account for in honeypot architectures. Indeed,
darknet-based approaches can produce at-scale insights into IoT
threats. A 2018 work from Shaik et al. [60] achieves Internet-scale
monitoring of compromised IoT devices, by correlating network
telescope captures with threat intelligence feeds. Pour et al. [49]
integrate the same setup with geolocation databases and ISPs’ feed-
backs, and infer at-scale IoT-probing campaigns characterized both
by affected industry sector and vendors. The same research group
expands the approach to achieve at-scale and locality-specific IoT-
botnets evolution [53] and consumer-IoT compromises [31]. Fur-
thermore, they implement ‘ex-IoT’, an IoT threat intelligence feed
that streams findings from such network telescope Internet-scale
IoT monitoring capability [50]. Notably, Griffioen and Doerr [16]
study Mirai-like botnets evolution and behavior by leveraging on
7,500 Honeytrack [27] deployments, Delft’s University network
telescope, and flow probing of infected devices.

Differently from the above approaches, our method proposes
using real IoT deployments as a vantage point to collect malicious
traffic. By design, this offers greater scalability options, and an
upfront position to intercept malicious phenomena proactively.
Finally, our work allows differentiating malicious traffic according
to deployment characteristics, achieving a highly specific view on
what are the targets of emerging anomalies.

MUD specification. The state-of-art on MUD profiles mostly
concerns studies on its effectiveness as threat prevention tool, and
proposals to extend their functionality.

In a 2018 work by Hamza et al. [22], the authors create a tool
to generate MUD profiles from network capture files of benign
traffic (MUDgee). Studying the MUD profiles for 28 devices, they
show how the specification can be integrated with Supervisory

Control and Data Acquisition (SCADA) policies. A 2018 work from
Schutijser [57] also proposes a MUD-profile generation tool, and
shows how the specification is effective in blocking DoS attempts.
Hamza et al. build upon MUDgee and study the intrusion-detection
effectiveness of the specification [20]. They show that MUD is able
to block Internet-side threats, for devices with limited functionality,
and specifically against volumetric attacks [19]. The researchers
extend their MUD-based intrusion detection method in work from
2019 [21], where they infer different anomalous status cases of
devices, by matching their dynamically observed behavior against
their MUD-expected behavior.

Other works focus on MUD integration and enhancing profiles’
functionalities. Matheu et al. propose a way to extend the profiles
to integrate security-testing results [33]. In related work, the au-
thors design an SDN-backed authentication messages exchange to
bootstrap MUD profiles in industrial environments [32]. Sajjad et
al. [54] extend MUD profiles with firmware integrity information,
fetched from vulnerability repositories, and distributed through a
blockchain framework. Furthermore, they design a MUD bootstrap-
ping routine accounting for gateway authentication, to prevent
attackers to bypass MUD through router vulnerabilities. Feraudo
et al. [11] propose a federated-learning framework [14] allowing
only MUD-compliant devices to publish training data. Finally, Afek
et al. [1] implement an ISP-level service to enforce MUD on behalf
of SOHOs, unburdening deployments from the task.

Notably, Afek’s work concludes by stating that such ISP-level
MUD services are at a perfect vantage point for detecting ‘global
phenomena’ of malicious events affecting SOHO IoT. In fact, to
the best of our knowledge, no other MUD work has yet explored
this aspect. We acknowledge the state-of-art results on MUD as an
intrusion detection tool, and as a base to instrument specification-
based IoT security. We move from these findings to propose a novel
use-case of MUD, focused on analyzing the traffic that is rejected
by the profile. Doing so, we gather insights on network threats
targeting consumer IoT devices.

9 CONCLUSION

We presented an approach to gather insights into network threats
targeting IoT devices. We showed that we can produce attack sig-
natures that identify attacks on IoT devices from various manufac-
turers. We argue that this technique can be leveraged by both IoT
manufacturers and the defenders’ community to aid in the prompt
detection and analysis of emerging IoT threats. Our approach is
based on the MUD specification and leverages the advantages of
specification-based IoT security. We implemented our approach,
open-sourced our tool, and validated its performance on both an
existing dataset and our own, openly available dataset. We showed
that MUDscope detects attacks with an F1-score of 95.77% and
correctly identifies attack signatures with an F1-score of 87.72%.
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A TRAFFIC FLOW FEATURES FORM NFDUMP

Selected non-protocol–specific features from the nfdump tool, at
https://manpages.ubuntu.com/manpages/xenial/man1/nfdump.1.html.

• ts. Start Time - first seen;
• te. End Time - last seen;
• td. Duration;
• pr. Protocol;
• sa. Source address;
• da. Destination address;
• sp. Source port;
• dp. Destination port;
• sas. Source autonomous system;
• pas. Previous autonomous system;
• ipkt. Input packets;
• opkt. Output packets;
• ibyt. Input bytes;
• obyt. Output bytes;
• flg. TCP flags;
• dir. Direction: ingress, egress;
• bps. Bytes per second;
• pps. Packets per second;
• bpp. Bytes per packet.

B IOT INTRUSION DETECTION DATASET

By Kang et al. [28], overviewed in Table 11.

(→ = attacks) # packets c.

Traffic scenario Interested devices Attack category Total Attack

benign both None 137k -
dos-synflood server→EZVIZ SYN Flooding 106k 48k
dos-synflood server→NUGU SYN Flooding 35k 17k
scan-hostport server→EZVIZ Port Scanning 80k 5k
scan-hostport server→NUGU Port Scanning 19k 6k
scan-portos server→EZVIZ OS Detection 186k 4k
scan-portos server→NUGU OS Detection 24k 8k
mirai-udpflood EZVIZ→server UDP Flooding 592k 475k
mirai-udpflood NUGU→server UDP Flooding 592k 475k
mirai-ackflood EZVIZ→server ACK Flooding 156k 38k
mirai-ackflood NUGU→server ACK Flooding 156k 38k
mirai-httpflood EZVIZ→server HTTP Flooding 124k 5k
mirai-httpflood NUGU→server HTTP Flooding 124k 5k
mirai-bruteforce EZVIZ→NUGU Telnet Bruteforce 273k 1.5k
mirai-bruteforce NUGU→EZVIZ Telnet Bruteforce 180k 1k
Table 11: Description of the used portion of the IoT Network
Intrusion Dataset, by Kang et al. [28]. Each traffic scenario is

a traffic capture file containing related activities. The target

device is either victim or executor (→) of the attack.

C PRELIMINARY MUD ANOMALY

PREVENTION

Table 12 overviews the result of packet-filtering with MUD profiles,
for the Kang dataset. Where the MRT packets are double those of
the ground truth, this happens simply because the generated MUD
profiles captured both incoming and outgoing packets, whereas
in the dataset, only incoming packets are marked as ground truth.
Additional packets regards probes from Microsoft, Amazon, Google
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Ezviz # of packets

Attack scenario Role All MRT

Ground

truth

Ground

truth

in MRT

% MUD

detected

mirai-ackflood atk 156k 96377 37816 37816 100
mirai-httpflood atk 124k 63793 5232 5232 100
scan-portos vict 186k 9944 4981 4463 89.6
mirai-brutefrc-atk atk 273k 36435 1636 1187 72.56
mirai-brutefrc-vict vict 179k 13087 961 737 76.69
mirai-udpflood atk 593k 533203 474642 474642 100
scan-hostport vict 80k 8200 5101 4659 91.34
dos-synflood vict 106k 99320 48103 48095 99.98

Average 91.27
Table 12: Effectiveness of MUD rules in detecting malicious packets. Tested for the Ezviz scenarios, in Kang et al. dataset. For

all specified attack scenarios, MUD filters in average 91.27% of malicious packets.

and alike. Overall, the results of the filtering set the base for our
further analyses.

D CLUSTERING PERFORMANCE ON LESS

REPRESENTED ATTACKS

We report below the outputs from clustering on the less represented
attacks of mirai UDP flooding, and brute-force cases.

In the first listing below, brute-force attacks have been left sepa-
rated in attacker and victim scenarios.

{ 'MIRAI−HOSTBRUTEFORCE−ATTACKER ' : {
' out − r e p r e s en t e d _ avg_p e r c en t a g e ' : 3 3 . 5 2 0 0 7 4 6 9 6 5 4 5 2 9 ,
' r e p r e s en t e d _ avg_p e r c en t a g e ' : 6 2 . 5 8 2 0 1 0 5 8 2 0 1 0 5 7 5
} ,

'MIRAI−HOSTBRUTEFORCE−VICTIM ' : {
' out − r e p r e s en t e d _ avg_p e r c en t a g e ' : 3 5 . 6 3 0 8 3 5 6 6 7 6 0 0 3 8 ,
' r e p r e s en t e d _ avg_p e r c en t a g e ' : 7 6 . 1 9 0 4 7 6 1 9 0 4 7 6 1 9
} ,

'MIRAI−UDPFLOODING ' : {
' out − r e p r e s en t e d _ avg_p e r c en t a g e ' : 3 8 . 2 3 5 2 9 4 1 1 7 6 4 7 0 6 ,
' r e p r e s en t e d _ avg_p e r c en t a g e ' : 1 0 0 . 0 }

}

C l u s t e r s p u r i t y : 8 4 . 5 8 9 3 7 1 9 8 0 6 7 6 3 2

C l u s t e r s { l a b e l : [ ma j o r i t y l a b e l pe r cen tage , ma j o r i t y l a b e l ] }
{ ' −1 ' : [ 0 , ' ' ] ,
' 0 ' : [ 1 0 0 . 0 , 'MIRAI−UDPFLOODING ' ] ,
' 1 ' : [ 1 0 0 . 0 , 'MIRAI−UDPFLOODING ' ] ,
' 10 ' : [ 6 0 . 0 , 'MIRAI−HOSTBRUTEFORCE−ATTACKER ' ] ,
' 11 ' : [ 1 0 0 . 0 , 'MIRAI−UDPFLOODING ' ] ,
' 12 ' : [ 1 0 0 . 0 , 'MIRAI−UDPFLOODING ' ] ,
' 13 ' : [ 5 8 . 3 3 3 3 3 3 3 3 3 3 3 3 3 3 6 , 'MIRAI−HOSTBRUTEFORCE−ATTACKER ' ] ,
' 14 ' : [ 1 0 0 . 0 , 'MIRAI−UDPFLOODING ' ] ,
' 15 ' : [ 1 0 0 . 0 , 'MIRAI−UDPFLOODING ' ] ,
' 16 ' : [ 1 0 0 . 0 , 'MIRAI−UDPFLOODING ' ] ,
' 17 ' : [ 1 0 0 . 0 , 'MIRAI−UDPFLOODING ' ] ,
' 18 ' : [ 1 0 0 . 0 , 'MIRAI−UDPFLOODING ' ] ,
' 19 ' : [ 1 0 0 . 0 , 'MIRAI−UDPFLOODING ' ] ,
' 2 ' : [ 1 0 0 . 0 , 'MIRAI−UDPFLOODING ' ] ,
' 20 ' : [ 5 0 . 0 , 'MIRAI−HOSTBRUTEFORCE−ATTACKER ' ] ,
' 21 ' : [ 6 4 . 2 8 5 7 1 4 2 8 5 7 1 4 2 9 , 'MIRAI−HOSTBRUTEFORCE−ATTACKER ' ] ,
' 22 ' : [ 1 0 0 . 0 , 'MIRAI−UDPFLOODING ' ] ,
' 23 ' : [ 1 0 0 . 0 , 'MIRAI−UDPFLOODING ' ] ,
' 24 ' : [ 1 0 0 . 0 , 'MIRAI−UDPFLOODING ' ] ,
' 25 ' : [ 1 0 0 . 0 , 'MIRAI−UDPFLOODING ' ] ,
' 26 ' : [ 1 0 0 . 0 , 'MIRAI−UDPFLOODING ' ] ,
' 27 ' : [ 1 0 0 . 0 , 'MIRAI−UDPFLOODING ' ] ,
' 28 ' : [ 1 0 0 . 0 , 'MIRAI−UDPFLOODING ' ] ,
' 29 ' : [ 1 0 0 . 0 , 'MIRAI−UDPFLOODING ' ] ,
' 3 ' : [ 5 0 . 0 , 'MIRAI−HOSTBRUTEFORCE−ATTACKER ' ] ,
' 30 ' : [ 1 0 0 . 0 , 'MIRAI−UDPFLOODING ' ] ,
' 31 ' : [ 1 0 0 . 0 , 'MIRAI−UDPFLOODING ' ] ,
' 32 ' : [ 1 0 0 . 0 , 'MIRAI−UDPFLOODING ' ] ,
' 33 ' : [ 1 0 0 . 0 , 'MIRAI−UDPFLOODING ' ] ,
' 34 ' : [ 1 0 0 . 0 , 'MIRAI−UDPFLOODING ' ] ,
' 35 ' : [ 7 7 . 7 7 7 7 7 7 7 7 7 7 7 7 7 7 , 'MIRAI−HOSTBRUTEFORCE−ATTACKER ' ] ,
' 36 ' : [ 8 0 . 0 , 'MIRAI−HOSTBRUTEFORCE−ATTACKER ' ] ,
' 37 ' : [ 7 5 . 0 , 'MIRAI−HOSTBRUTEFORCE−ATTACKER ' ] ,
' 38 ' : [ 8 5 . 7 1 4 2 8 5 7 1 4 2 8 5 7 1 , 'MIRAI−HOSTBRUTEFORCE−VICTIM ' ] ,

' 39 ' : [ 6 0 . 0 , 'MIRAI−HOSTBRUTEFORCE−ATTACKER ' ] ,
' 4 ' : [ 5 0 . 0 , 'MIRAI−HOSTBRUTEFORCE−ATTACKER ' ] ,
' 40 ' : [ 6 6 . 6 6 6 6 6 6 6 6 6 6 6 6 6 7 , 'MIRAI−HOSTBRUTEFORCE−ATTACKER ' ] ,
' 41 ' : [ 6 6 . 6 6 6 6 6 6 6 6 6 6 6 6 6 7 , 'MIRAI−HOSTBRUTEFORCE−VICTIM ' ] ,
' 42 ' : [ 6 6 . 6 6 6 6 6 6 6 6 6 6 6 6 6 7 , 'MIRAI−HOSTBRUTEFORCE−ATTACKER ' ] ,
' 43 ' : [ 8 0 . 0 , 'MIRAI−HOSTBRUTEFORCE−ATTACKER ' ] ,
' 44 ' : [ 5 0 . 0 , 'MIRAI−HOSTBRUTEFORCE−ATTACKER ' ] ,
' 5 ' : [ 5 0 . 0 , 'MIRAI−HOSTBRUTEFORCE−ATTACKER ' ] ,
' 6 ' : [ 1 0 0 . 0 , 'MIRAI−UDPFLOODING ' ] ,
' 7 ' : [ 1 0 0 . 0 , 'MIRAI−UDPFLOODING ' ] ,
' 8 ' : [ 1 0 0 . 0 , 'MIRAI−UDPFLOODING ' ] ,
' 9 ' : [ 1 0 0 . 0 , 'MIRAI−UDPFLOODING ' ] }

In this second listing, victim and attacker brute-force scenarios
were merged into one brute-force label.

{ 'MIRAI−BRUTEFORCE ' : {
' out − r e p r e s en t e d _ avg_p e r c en t a g e ' : 6 1 . 7 6 4 7 0 5 8 8 2 3 5 2 9 4 ,
' r e p r e s en t e d _ avg_p e r c en t a g e ' : 1 0 0 . 0
} ,

'MIRAI−UDPFLOODING ' : {
' out − r e p r e s en t e d _ avg_p e r c en t a g e ' : 3 8 . 2 3 5 2 9 4 1 1 7 6 4 7 0 6 ,
' r e p r e s en t e d _ avg_p e r c en t a g e ' : 1 0 0 . 0 }
}

C l u s t e r s p u r i t y : 9 7 . 8 2 6 0 8 6 9 5 6 5 2 1 7 3

C l u s t e r s { l a b e l : [ ma j o r i t y l a b e l pe r cen tage , ma j o r i t y l a b e l ] }
{ ' −1 ' : [ 0 , ' ' ] ,
' 0 ' : [ 1 0 0 . 0 , 'MIRAI−UDPFLOODING ' ] ,
' 1 ' : [ 1 0 0 . 0 , 'MIRAI−UDPFLOODING ' ] ,
' 10 ' : [ 1 0 0 . 0 , 'MIRAI−BRUTEFORCE ' ] ,
' 11 ' : [ 1 0 0 . 0 , 'MIRAI−UDPFLOODING ' ] ,
' 12 ' : [ 1 0 0 . 0 , 'MIRAI−UDPFLOODING ' ] ,
' 13 ' : [ 1 0 0 . 0 , 'MIRAI−BRUTEFORCE ' ] ,
' 14 ' : [ 1 0 0 . 0 , 'MIRAI−UDPFLOODING ' ] ,
' 15 ' : [ 1 0 0 . 0 , 'MIRAI−UDPFLOODING ' ] ,
' 16 ' : [ 1 0 0 . 0 , 'MIRAI−UDPFLOODING ' ] ,
' 17 ' : [ 1 0 0 . 0 , 'MIRAI−UDPFLOODING ' ] ,
' 18 ' : [ 1 0 0 . 0 , 'MIRAI−UDPFLOODING ' ] ,
' 19 ' : [ 1 0 0 . 0 , 'MIRAI−UDPFLOODING ' ] ,
' 2 ' : [ 1 0 0 . 0 , 'MIRAI−UDPFLOODING ' ] ,
' 20 ' : [ 1 0 0 . 0 , 'MIRAI−BRUTEFORCE ' ] ,
' 21 ' : [ 1 0 0 . 0 , 'MIRAI−BRUTEFORCE ' ] ,
' 22 ' : [ 1 0 0 . 0 , 'MIRAI−UDPFLOODING ' ] ,
' 23 ' : [ 1 0 0 . 0 , 'MIRAI−UDPFLOODING ' ] ,
' 24 ' : [ 1 0 0 . 0 , 'MIRAI−UDPFLOODING ' ] ,
' 25 ' : [ 1 0 0 . 0 , 'MIRAI−UDPFLOODING ' ] ,
' 26 ' : [ 1 0 0 . 0 , 'MIRAI−UDPFLOODING ' ] ,
' 27 ' : [ 1 0 0 . 0 , 'MIRAI−UDPFLOODING ' ] ,
' 28 ' : [ 1 0 0 . 0 , 'MIRAI−UDPFLOODING ' ] ,
' 29 ' : [ 1 0 0 . 0 , 'MIRAI−UDPFLOODING ' ] ,
' 3 ' : [ 1 0 0 . 0 , 'MIRAI−BRUTEFORCE ' ] ,
' 30 ' : [ 1 0 0 . 0 , 'MIRAI−UDPFLOODING ' ] ,
' 31 ' : [ 1 0 0 . 0 , 'MIRAI−UDPFLOODING ' ] ,
' 32 ' : [ 1 0 0 . 0 , 'MIRAI−UDPFLOODING ' ] ,
' 33 ' : [ 1 0 0 . 0 , 'MIRAI−UDPFLOODING ' ] ,
' 34 ' : [ 1 0 0 . 0 , 'MIRAI−UDPFLOODING ' ] ,
' 35 ' : [ 1 0 0 . 0 , 'MIRAI−BRUTEFORCE ' ] ,
' 36 ' : [ 1 0 0 . 0 , 'MIRAI−BRUTEFORCE ' ] ,
' 37 ' : [ 1 0 0 . 0 , 'MIRAI−BRUTEFORCE ' ] ,
' 38 ' : [ 1 0 0 . 0 , 'MIRAI−BRUTEFORCE ' ] ,
' 39 ' : [ 1 0 0 . 0 , 'MIRAI−BRUTEFORCE ' ] ,
' 4 ' : [ 1 0 0 . 0 , 'MIRAI−BRUTEFORCE ' ] ,
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Figure 5: Sample output from the comparison of anomalous

signatures through multiple feeds. In this Figure, the DoS

signature for Foscam cam and Foscam cam2 can be appreci-

ated for the clusters balance feature.

' 40 ' : [ 1 0 0 . 0 , 'MIRAI−BRUTEFORCE ' ] ,
' 41 ' : [ 1 0 0 . 0 , 'MIRAI−BRUTEFORCE ' ] ,
' 42 ' : [ 1 0 0 . 0 , 'MIRAI−BRUTEFORCE ' ] ,
' 43 ' : [ 1 0 0 . 0 , 'MIRAI−BRUTEFORCE ' ] ,
' 44 ' : [ 1 0 0 . 0 , 'MIRAI−BRUTEFORCE ' ] ,
' 5 ' : [ 1 0 0 . 0 , 'MIRAI−BRUTEFORCE ' ] ,
' 6 ' : [ 1 0 0 . 0 , 'MIRAI−UDPFLOODING ' ] ,
' 7 ' : [ 1 0 0 . 0 , 'MIRAI−UDPFLOODING ' ] ,
' 8 ' : [ 1 0 0 . 0 , 'MIRAI−UDPFLOODING ' ] ,
' 9 ' : [ 1 0 0 . 0 , 'MIRAI−UDPFLOODING ' ] }

Despite the large number of clusters generated, attacks are cor-
rectly isolated in respective clusters. This can be especially ob-
served in the second listing. The clustering algorithm thus discerns
attacks with appreciable results. In particular, even if the amount of
produced clusters is not optimal, the results still represent a charac-
terization that will be consistently replicated for similar anomalous
traffic captured.

E MRT FEEDS SIGNATURES COMPARISON

SAMPLE

Figure 5 presents a sample plot for the trendo of the clusters
balance feature across the MRT feeds of the six tested IoT devices.
We can visually appreciate the similarity of the fluctuations through
the two lines. Note there are fluctuations also in the MRT feed for
the Eufy doorbell, through the time windows 17 to 20, and a false-
positive fluctuation for the MRT feed of Foscam cam 2, between
windows 7 and 10. In the listing below, we report the report output
produced by our tool. We remind that the complete set of plots,
and anomaly detection and signature-matching reports is publicly
available to view [40].
∗ ~ ∗ ~ ∗ ~ ∗ ~ ∗ ~ ∗ ~ ∗ ~ ∗ Anomal ies r e co rded f o r each MRT f e ed submi t t ed ∗ ~ ∗ ~ ∗ ~ ∗ ~ ∗ ~ ∗ ~ ∗ ~ ∗

c l u s t e r s _ e v o l s _ r e c o r d − s e s s i o n 4 _ l 1 −eufy − d o o r b e l l :
between : 2 0 : 5 8 : 3 2 and 2 0 : 5 9 : 5 2 on the 2022 −06 −24 −−− t ime

windows [ 17 , 20 ]

c l u s t e r s _ e v o l s _ r e c o r d − s e s s i o n 4 _ l 1 − foscam −cam :
between : 2 0 : 5 4 : 5 9 and 2 0 : 5 8 : 4 4 on the 2022 −06 −24 −−− t ime

windows [ 10 , 18 ]

c l u s t e r s _ e v o l s _ r e c o r d − s e s s i o n 4 _ l 1 − foscam −cam2 :
between : 2 0 : 5 3 : 4 8 and 2 0 : 5 4 : 3 8 on the 2022 −06 −24 −−− t ime

windows [ 7 , 10 ]
between : 2 0 : 5 9 : 3 8 and 2 1 : 0 2 : 5 9 on the 2022 −06 −24 −−− t ime

windows [ 19 , 27 ]

>>>>>>>>>>>> Common anoma l i e s found <<<<<<<<<<<<

[ 0 ] Device ID S i gn a t u r e t r a n s i t i o n s window S i gn a t u r e t ime window
MRT Feed

−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

l 1 −eufy − d o o r b e l l [ 17 − 20 ] 2022 −06 −24 2 0 : 5 8 : 3 2 −
2022 −06 −24 2 0 : 5 9 : 5 2 c l u s t e r s _ e v o l s _ r e c o r d − s e s s i o n 4 _ l 1 −eufy − d o o r b e l l

l 1 − foscam −cam2 [7 − 10 ] 2022 −06 −24 2 0 : 5 3 : 4 8 −
2022 −06 −24 2 0 : 5 4 : 3 8 c l u s t e r s _ e v o l s _ r e c o r d − s e s s i o n 4 _ l 1 − foscam −cam2

Max f e a t u r e s c o r r e l a t i o n : 1 . 0 −−− Avg f e a t u r e s c o r r e l a t i o n :
3 . 9 8 3 2 8 8 2 7 4 1 2 5 3 0 7 4 e −05 −−− Combined s c o r e : 0 . 5 0 0 0 1 9 9 1 6 4 4 1 3 7 0 7

C o r r e l a t i o n p ena l t y mu l t i p l y e r f o r c l u s t e r s d i f f e r e n c e : 1

C o r r e l a t i o n v a l u e s f o r s i g n a t u r e f e a t u r e s :
{ ' a l l _ d i s t s _ a v g ' : −0 . 9 9 96016711725875 , ' mutual_matches_n ' : 0 . 0 , '

mutua l_matches_percen tage ' : 0 . 0 , ' fwd_matches_n ' : 0 . 0 , '
fwd_matches_percentage ' : 0 . 0 , ' fwd_matches_agg lomera t ion_avg ' :
0 . 0 , ' bwd_matches_n ' : 0 . 0 , ' bwd_matches_percentage ' : 0 . 0 , '
bwd_matches_agglomerat ion_avg ' : 0 . 0 , ' c l u s t e r s _ b a l a n c e ' : 1 . 0 }

[ 1 ] Dev ice ID S i gn a t u r e t r a n s i t i o n s window S i gn a t u r e t ime window
MRT Feed

−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

l 1 − foscam −cam [10 − 18 ] 2022 −06 −24 2 0 : 5 4 : 5 9 − 2022 −06 −24
2 0 : 5 8 : 4 4 c l u s t e r s _ e v o l s _ r e c o r d − s e s s i o n 4 _ l 1 − foscam −cam

l1 − foscam −cam2 [19 − 27 ] 2022 −06 −24 2 0 : 5 9 : 3 8 − 2022 −06 −24
2 1 : 0 2 : 5 9 c l u s t e r s _ e v o l s _ r e c o r d − s e s s i o n 4 _ l 1 − foscam −cam2

Max f e a t u r e s c o r r e l a t i o n : 0 . 9 9 9 8 5 8 4 7 1 2 4 7 8 6 1 4 −−− Avg f e a t u r e s
c o r r e l a t i o n : 0 . 8 6 5 0 2 9 2 9 0 9 2 2 6 6 8 3 −−− Combined s c o r e :
0 . 9 3 2 4 4 3 8 8 1 0 8 5 2 6 4 9

C o r r e l a t i o n p ena l t y mu l t i p l y e r f o r c l u s t e r s d i f f e r e n c e : 1

C o r r e l a t i o n v a l u e s f o r s i g n a t u r e f e a t u r e s :
{ ' fwd_matches_agg lomera t ion_avg ' : 0 . 5 8 1 9 4 1 6 3 8 2 5 5 2 8 2 7 , ' fwd_matches_n ' :

0 . 7 5 3 3 3 8 2 4 3 8 6 7 1 2 , ' c l u s t e r s _ b a l a n c e ' : 0 . 7 7 1 8 4 4 9 8 4 9 8 7 9 5 9 7 , '
bwd_matches_n ' : 0 . 8 4 8 5 5 5 2 9 1 6 2 7 6 6 3 4 , ' fwd_matches_percentage ' :
0 . 8 8 6 2 3 2 6 4 3 6 2 4 8 7 0 9 , ' mutual_matches_n ' : 0 . 8 9 7 8 2 4 7 6 1 5 3 6 4 6 6 4 , '
mutua l_matches_percen tage ' : 0 . 9 5 0 1 8 0 8 3 9 3 9 9 0 3 8 7 , '
bwd_matches_percentage ' : 0 . 9 6 1 5 9 8 8 2 9 0 9 9 8 2 4 7 , '
bwd_matches_agglomerat ion_avg ' : 0 . 9 9 8 9 1 7 2 0 5 5 8 0 5 9 6 2 , '
a l l _ d i s t s _ a v g ' : 0 . 9 9 9 8 5 8 4 7 1 2 4 7 8 6 1 4 }

F AMI FORMULA

To produce the AMI score, we first compute the mutual information
𝑀𝐼 (𝑋,𝑌 ):

𝑀𝐼 (𝑋,𝑌 ) =
∑︁
𝑦∈𝑌

∑︁
𝑥 ∈𝑋

𝑝 (𝑥,𝑦) log
( 𝑝 (𝑥,𝑦)
𝑝 (𝑥)𝑝 (𝑦)

)
For our analysis, 𝑥 and 𝑦 are the values of the flow features,

and the attack class, respectively. We then adjust the value by
normalizing it on the expected value for𝑀𝐼 , and the average over
the entropy of 𝑋 and 𝑌 :

𝐴𝑀𝐼 (𝑋,𝑌 ) = 𝑀𝐼 (𝑋,𝑌 ) − 𝐸 [𝑀𝐼 (𝑋,𝑌 )]
max(𝐻 (𝑋 ), 𝐻 (𝑌 )) − 𝐸 [𝑀𝐼 (𝑋,𝑌 )] .
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