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Abstract While different works tested antiviruses (AVs) resilience to
obfuscation techniques, no work studied AVs looking at the big picture,
that is including their modern components (e.g., emulators, heuristics). As
a matter of fact, it is still unclear how AVs work internally. In this paper,
we investigate the current state of AVs proposing a methodology to explore
AVs capabilities in a black-box fashion. First, we craft samples that trigger
specific components in an AV engine, and then we leverage their detection
outcome and label as a side channel to infer how such components work.
To do this, we developed a framework, CRAVE, to automatically test
and explore the capabilities of generic AV engines. Finally, we tested and
explored commercial AVs and obtained interesting insights on how they
leverage their internal components.

1 Introduction

Antiviruses are still the major solution to protect end users. Despite the importance
of malware detectors, there still is a need for testing methodologies that allow to
test and evaluate them.

Current AV testing and comparison methodologies, rely on the capability of
detection of samples [31, 7], and offer interesting insights on the time needed
to detected a new sample for a product, but offer no insights in what are the
capabilities implemented in an antivirus engine.

Moreover, most previous works focus on testing signature matching, and
show how obfuscation techniques are effective against static analysis-based detec-
tors [12, 6, 26, 27, 29]. However, modern AVs are complex systems that are not
only based on static features and implement heuristics matching and emulation
techniques (Figure 1) |27, 31, 32]. Other works focus on studying techniques to
evade emulators [4, 5, 11, 14, 17, 16, 24, 30]. Neither of them focus specifically on
AVs, or provide a comprehensive evaluation of AVs emulators. Rather, they look
for new techniques to exploit AVs shortcomings. As a consequence, we lack of a
recent and comprehensive study on modern AVs and of a complete understanding
of how they really work. For instance, today it is usually believed that AVs mainly
rely on signature matching while it is still unclear whether and how they leverage
emulation engines. This sense of “obscurity” does not help protecting users, be-
cause it is hard to understand the features that AVs implement and evaluate their
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Figure 1: Overview of a typical AV engine.

capabilities. Instead, by exploring AV engines and understanding their internals,
it is possible, for instance, to identify weaknesses, map the attack surface, or
understand how stealthy samples can evade detection.

In this work, we move toward filling this gap by providing a comprehensive
methodology to explore and test modern AVs, down to their core components. Our
methodology builds upon the techniques devised so far in testing antiviruses [4, 6].
Differently from the techniques and frameworks proposed so far, our objective is
to allow exploration of the features of antivirus engines both at a coarse and fine
grained level. Doing so, we aim at answering the following questions: (Q1) Does
an AV implement emulation? (Q2) Does it implement static unpacking? (Q3)
Does it implement heuristics matching?

To answer them, the main challenge is that AVs are closed and very complex
systems. Hence, performing an in depth analysis is a very complex task and
requires deep reverse engineering knowledge. However, this would not scale and
cannot be applied to efficiently evaluate many AVs. Instead, we use a generic, black-
box methodology that does not make any assumption on the AVs implementation.
We consider an AV as black-box system whose inputs are the scanned samples
and whose outputs are the outcomes of the scans. First, we craft a set of samples
aiming at triggering specific components in the AV engine. Then, observing how
the AV reports and labels the input samples, we infer details on how the engine
components work internally. Essentially, we leverage the scan outcome as a side
channel to gain information about the detection process. In practice, we developed
a set of tests in a framework, CRAVE, that, following our methodology, can be
used to automatically retrieve the capabilities of a generic AV, requiring manual
interventions only to generate peculiar samples such as an undetectable dropper.
Specifically, we focused on and implemented three interesting tests: (1) Testing
whether an AV adopts an emulation engine. (2) Testing whether an AV performs
static unpacking. (3) Testing whether an AV relies on common heuristics.

Armed with CRAVE, we leveraged VirusTotal ! to perform a large-scale exper-
iment on 50 commercial AVs (including the popular Kaspersky, McAfee, Avast,

! https://www.virustotal.com
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Figure 2: High-level methodology adopted to explore AVs and extract information
about their internals and capabilities.

Symantec). In our experiments, we found that 4 AVs fully implement code emula-
tion. Then, we successfully determined that 20 AVs implement static unpackers.
Finally, we verified that our samples mutations trigger the heuristics matching
engine and affect the detection outcome.

In summary, we make the following contributions:

— We demonstrated how variations to the samples submitted for analysis to an
antivirus engine, combined with the resulting assigned label, constitutes a
powerful side channel allowing to infer characteristics of the engines employed
for scanning.

— Leveraging this side channel, we developed a framework, CRAVE, to automat-
ically explore AV engines in a black-box fashion.

— Armed with CRAVE, we investigated the current state of AV engines. Specifi-
cally, we focused on understanding whether and how AVs leverage different
components (heuristics, emulation engines, static unpackers) to process and
detect malicious samples.

In the spirit of open science, we make the code developed for CRAVE publicly
available 2.

2 CRAVE Testing Methodology and Framework

Our methodology is based on providing AVs with different samples as input and
observing how they report such samples. As depicted in Figure 2, we first craft a
new sample by obfuscating and mutating a base sample. Such mutations embed
features that under analysis reveal whether specific AV components have been
triggered. Then, we provide the AV with our crafted sample and observe the
detection outcome. If the AV reports a detection, we also verify whether it labels
the sample accordingly—same label of the initial base sample. Intuitively, if the AV

2 https://github.com/necst/crave
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Figure 3: Crafting phase, different “mutations” are applied on the sample.

correctly detects and labels our crafted sample, it means it managed to properly
handle all the mutations and spot the malicious payload.

We implemented CRAVE to support Windows executables. However, our ap-
proach is generic and can be applied to any other operating system and executable
format. CRAVE is composed by three key components: a samples crafter, a label
checker, and a decision module.

2.1 Sample Crafter

CRAVE leverages a set of base samples described in Table 1, on which it applies
different mutations to stimulate the AV engine under analysis. Figure 3 shows
each step of the crafting process. The base sample goes through a set of different
(optional) steps: addition of a dropper, applying a packer, and a set of mutations.

(1) Dropper. We developed a custom dropper with low detection rate to test em-
ulation features. At run-time, our dropper decrypts a malicious sample contained
in the resources section using a long (30 bytes) key, stores it on the filesystem
and executes it. CRAVE uses the dropper to identify AVs that perform emulation.
If an AV is able to correctly identify and label the malicious payload embedded
in our dropper, we infer it implemented dynamic analysis features (emulation).

(2) Mutations. We test four popular heuristics usually implemented by AVs [27].
Table 2 describes the samples features that we modify to trigger the heuristics
matching. We compare how the detection outcome changes after applying our
mutations. We do this for two different purposes: First, applying them to a benign

Table 1: Base samples used in our analysis

Sample class Description

goodware goodware samples that is not mis-detected
malware known malware sample (detected)
dropper simple dropper that decrypts a sample, stores in on the filesystem

and finally executes it




sample to determine whether AV heuristics match such features. Second, on the
other hand, applying them to a malicious sample to determine whether such
features can be used to evade detection.

(3) Packers. We apply known packers to our base samples in order to understand
whether AVs implement static unpackers. Specifically, we pack a malicious sample
with a given packer. Then, we edit the packer’s stub overwriting its entry point
with a RET instruction. Finally, leveraging the detection outcome and label as a
side channel, we can infer if the AV employs static unpacking. In fact, if the AV
correctly labels the packed malicious sample, it means it successfully unpacked it.
However, since we broke the packer’s stub, this implies the unpacking has been
performed statically.

2.2 Label Checker

The crafting phase might change the detection outcome of certain AVs in such
a way that the submitted sample is still correctly recognized as malicious, but
as a variant of the sample (e.g., W32/Virut.Gen and W32/Virut.X after ap-
plying mutations). Note that, CRAVE needs to consider labels matches in its
approach. For instance, when testing if an AV performs emulation, we want to
verify that the AV correctly labels the dropped payload, and does not simply de-
tect a GenericDropper. Therefore, CRAVE needs to handle little, and irrelevant,
differences in the labels of the same sample.

AVClass [28], in its actual state, cannot be used for a direct comparison of two
labels, rather it is used to label a sample as a variant of a known family. Thus,
we devised a simple method for comparing the labels based on two steps: First a
filtering phase in which we remove generic and heuristic labels. Second, a matching
phase, based on the aliases for families leveraging AVClass and Metaphone [25].
Metaphone is a phonetic matching algorithm commonly used for indexing and
matching text. In our empirical tests, Metaphone performed well on the assigned
AV labels. For example, W32/Virut.Gen and W32/Virut.X are both encoded into
FRT, making the matching process easy and straightforward. When a sample
is labeled with a generic signature, this phase discards it to avoid imprecise
detections.

Table 2: Features implemented to test heuristics.

Class Feature Description
Section Names random Randomly generated (alphanumeric)

randomdot Random, starts with a dot

infer Based on section characteristics and inferred content
Permissions rWx Force all sections to have rwx permissions
Checksum correct Force a correction of the checksum

broken Do not correct the checksum




2.3 Decision Module

The decision module compares the detection outcomes and the labels leveraging
our Label Checker. In practice, it implements the inferring process described
earlier to determine AVs capabilities.

(1) Test Emulation. Comparing the labels assigned to our dropper and malicious
payload, the decision module determines whether an AV performs emulation.

(2) Test Heuristics. Looking at new or missed detections of the mutated sample
in respect to its original base specimen, the decision module determines whether
a certain heuristic can be employed to change the detection outcome.

(3) Test Static Unpacking. Comparing the labels assigned to our packed
sample and malicious payload, the decision module determines whether an AV
performs static unpacking.

3 Experimental Results

First, we verified whether AVs perform emulations. Then, we verified whether
AVs perform static unpacking. Finally, we verified how sample features affect the
heuristic engine.

Dataset and Setup. We leveraged VirusTotal to perform a large-scale experi-
ment. Our methodology requires a malware sample that is detected by the tested
AV. For this reason we looked for a sample to maximize the number of reported
detections in VirusTotal. For our experiments, we used a variant of Virut 3, which
at the time of our experiments was detected by 64 out of 67 AVs.

Requirements. Our methodology needs three requirements to be satisfied:

1) The goodware sample must not be detected as malicious by the AV.

2) The known malicious sample must be detected by the tested AV.

3) The dropping logic must not be flagged as malicious by the AV.

These assumptions are easy to meet and we can verify that they hold as a first
step of our methodology.

3.1 Testing Emulation

Following our methodology described in Section 2, we tested if AVs perform
emulation (Table 3). After filtering out all the AVs from VirusTotal that do not
satisfy our aforementioned requirements, we reduced the initial list of 64 AVs to
50. Among these 50 AVs, CRAVE identified 4 of them performing full emulation
(AV4, AV15, AV16, AV19). Six more AVs were able to detect our crafted dropper,
but they reported an inconsistent label. Hence, we could not determine whether
they performed emulation.

Dropper Variation (No Execute). We repeated this experiment changing our
crafted dropper. Specifically, our new dropper did not execute the dropped file

3 SHA256: 06c62c4ch38292fb35(2c2905fce2d96f59d2d461fa217h749febfed3ef968d



anymore, but it only decrypted it and dumped it on a file. As a consequence, this
caused AV4 and AV15 to report it as benign. Interestingly, a new, different AV
correctly detected and labeled the new dropper, showing it performed emulation.
We could not speculate the reason behind the latter, as this would require deeper
investigation.

3.2 Testing Static Unpacking

Following our methodology described in Section 2, we tested if AVs perform
static unpacking. As shown in Table 3, we tested AVs against 5 different, known
packers (UPX, MEW, ASPack, kkrunchy, Petite). After filtering out the AVs from
VirusTotal that do not satisfy our requirements, we obtained a list of 64 AVs. All
in all, we found 17 AVs that statically unpack UPX, 0 MEW, 6 ASPack, 0 kkrunchy,
4 Petite.

Stressing Static Unpacking. We repeated the same experiment as above
applying the infer mutation to our crafted, packed samples. The results of this
test shows that one AV (AV18) did not unpack ASPack and Petite anymore,
suggesting it might rely on sections names to understand the type of packer—for
instance, ASPack introduces a section named .aspack.

Goodware. Then, we performed a different experiment by packing our benign
helloword and testing whether AVs detect the packers independently if they
embed goodware or malware. We found 2 AVs detecting UPX, 16 MEW, 2 ASPack,
26 kkrunchy, 7 Petite.

3.3 Testing Heuristics

We tested if AVs match popular heuristics (Table 3).

Goodware. First, we tested whether applying our mutations (Table 2) to our
benign helloworld triggers detection. We found that our infer and checksum
do not trigger any new detection. On the other hand, RWX triggers 1 new detection,
random 9, and randomdot 10.

Malware. Second, we verified whether applying our mutations (Table 2) to our
malicious payload (i.e., virut) causes missed detections. We found that checksum
causes 1 missed detection, RWX 1, random 2, randomdot 4, and infer 5.

This experiments show that applying mutations to trigger heuristics matching
can affect the AVs detection outcomes, and demonstrate the need for a deeper
exploration of such behaviors in future work.

4 Limitations and Future Works

Setup Limitations. While leveraging VirusTotal allows to easily perform large-
scale experiments, it also has the limitation of not knowing how each AV is con-
figured. The AVs included in VirusTotal might be parameterized with a different
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heuristic/aggressiveness level than the official end-user default configuration [1].
Indeed, we do not aim at providing a quality evaluation of commercial products.

Methodology Limitations. Our methodology cannot fully work if AVs only use
generic labels. For instance, in our experiments we found two AVs, that labeled
different samples in the same way (e.g., “Malicious.HighConfidence”’).

Some AVs might emulate only samples showing specific features (e.g., having a
RWX memory area, or a specific sequence of instructions). In this case, we would
need to apply or fuzz typical trigger conditions.

Since we cannot control what happens inside AVs engines, when we test if an
AV performs emulation, we might face a case in which the emulator fails because
of an implementation flaw (e.g., missing emulated API). This would make our
methodology infer that the AV does not perform emulation, while it actually does.
However, from the detection capabilities perspective this has the same effect: the
dropped malware is not detected.



Future Works. Other than addressing the above limitations, we foresee two
other research directions. First, studying the differences between local and cloud
AVs, and between their free and premiums versions. Second, exploring different
side channels that can be used to extract information from AV engines. For
instance, writing in memory the extracted information and then reading such
information by dumping and inspecting the memory of the AV process.

5 Related Works

Antivirus Testing: Signature Matching. Researchers studied how syntac-
tic obfuscation techniques can defeat signature matching and evaluated AVs
capabilities of detecting malware samples that implement such obfuscation tech-
niques [6, 9]. However, they did not focus on heuristics and emulation features.
The same apply for many other works that focus on techniques to defeat static
analysis [12, 26].

Evasion of Emulators-based Detection. Several works described techniques
to escape from emulators [2, 15, 30, 17, 13, 10, 16, 5, 8, 4]. However, while they
show how emulators can be effectively bypassed, they do not propose any generic
methodology or comparison between AVs.

Attacking Antivirus Software. Ormandy revealed several implementation
vulnerabilities in commercial antivirus products showing how their complexity
often exposes a large attack surface [18, 19, 20, 21, 22, 23]. Wressnegger et
al. derived AV signatures from malware and proposed a novel class of attacks
called “antivirus assisted attacks” that, abusing the byte-pattern based signature
matching flow, allow adversaries to remotely instruct AVs to block or delete
content on the victim machine [33]. Al-Saleh et al. determined through time
channel attacks whether the database of an AV has been updated with certain
signatures or not [3].

Emulators Fingerprinting. AVLeak [4] extracts artifacts from AV emulators
using a black-box approach. It maps known malware samples to bytes and then
leverages custom droppers to leak data by exploiting AVs labeling.

6 Conclusions

In this work, we performed an exploratory study of modern AVs by testing their
capabilities. We adopted a black-box methodology that leverages the detection
outcome and label as a side-channel to obtain info about the AVs internals. In
our experiments on 50 AVs, we found that not all the AVs perform full emulation,
that most of AVs implement static unpackers for known packers, and that ap-
plying mutations to input samples in order to trigger heuristics matching affects
the detection outcome. We believe that testing and exploring AV engines helps
reducing that sense of “obscurity” that is often hidden behind AVs. In fact, testing
AVs features is a fundamental step in order to evaluate their capabilities, identify
weaknesses, or map their attack surface. In conclusion, while we only scratched



the surface of AV testing and exploration, our results are promising and show that
it is interesting to extend our study in future work. We envision our framework
to be extended and used as a reference to test how AVs behave, and how they
rely on each internal component.

7 Acknowledgments

This work has been supported by the Italian Ministry of University and Research
FIRB project FACE (Formal Avenue for Chasing malwarE) — grant agreement
N. RBFRI3AJFT, and by the European Union’s Horizon 2020 research and
innovation programme under the Marie Sktodowska-Curie — grant agreement N.
690972

References

[1] VirusTotal, About Page. https://www.virustotal.com/en/about/.

[2] Just-In-Time Malware Assembly: Advanced Evasion Techniques. Invincea white
paper, 2015.

[3] M. I. Al-Saleh and J. R. Crandall. Application-Level Reconnaissance: Timing
Channel Attacks Against Antivirus Software. In LEET, 2011.

[4] J. Blackthorne, A. Bulazel, A. Fasano, P. Biernat, and B. Yener. AVLeak: Finger-
printing Antivirus Emulators through Black-Box Testing. In USENIX Workshop
on Offensive Technologies (WOOT), Austin, TX, 2016. USENIX Association.

[5] X. Chen, J. Andersen, Z. M. Mao, M. Bailey, and J. Nazario. Towards an under-
standing of anti-virtualization and anti-debugging behavior in modern malware.
June 2008.

[6] M. Christodorescu and S. Jha. Testing Malware Detectors. SIGSOFT Softw. Eng.
Notes, July 2004.

[7] A. comparatives. Intipendent tests of anti-virus software.

[8] M. Cova. Uncloaking Advanced Malware: How to Spot and Stop an Evasion, 2015.

[9] M. Dalla Preda and F. Maggi. Testing android malware detectors against code
obfuscation: a systematization of knowledge and unified methodology. Journal of
Computer Virology and Hacking Techniques, 2017.

[10] K. Economou. Escaping the avast sandbox using a single ioctl. 2016.

[11] P. Ferrie. Attacks on more virtual machine emulators. 2007.

[12] Y. Isun and Y. Kangbin. Malware obfuscation techniques: A brief survey. 2010.

[13] P. Jung. Bypassing sandboxes for fun. 2014.

[14] D. Keragala. Detecting malware and sandbox evasion techniques. 2016.

[15] J. A. P. Marpaung, M. Sain, and H.-J. Lee. Survey on malware evasion techniques:
State of the art and challenges. Feb 2012.

[16] H. Mourad. Sleeping your way out of the sandbox. 2015.

[17] E. Nasi. Bypass antivirus dynamic analysis. 2014.

[18] T. Ormandy. Comodo antivirus: Emulator stack buffer overflow handling psubusb
packed subtract unsigned with saturation.

[19] T. Ormandy. Comodo: Integer overflow leading to heap overflow in win32 emulation.

[20] T. Ormandy. Eset nod32 heap overflow unpacking epoc installation files.

[21] T. Ormandy. Symantec/norton antivirus aspack remote heap/pool memory cor-
ruption vulnerability cve-2016-2208.


https://www.virustotal.com/en/about/

[22]
23]
24]

[25]
[26]

[27]

28]

29]

(30]
31]

32]
[33]

T. Ormandy. Sophail: A critical analysis of sophos antivirus. 2011.

T. Ormandy. Sophail: Applied attacks against sophos antivirus. 2012.

R. Paleari, L. Martignoni, G. F. Roglia, and D. Bruschi. A Fistful of Red-pills: How
to Automatically Generate Procedures to Detect CPU Emulators. In Proceedings
of the 3rd USENIX Conference on Offensive Technologies, WOOT 09, Berkeley,
CA, USA, 2009. USENIX Association.

L. Philips. Hanging on the metaphone. Computer Language, 1990.

B. B. Rad, M. Masrom, and Ibrahim. Camouflage in malware : from encryption to
metamorphism. IJCSNS, 2012.

B. B. Rad, M. Masrom, and S. Ibrahim. Evolution of Computer Virus Concealment
and Anti-Virus Techniques:AShort Survey. CoRR, 2011.

M. Sebastian, R. Rivera, P. Kotzias, and J. Caballero. AVclass: A tool for massive
malware labeling. In Proceedings of the International Symposium on Research in
Attacks, Intrusions, and Defenses. Springer, 2016.

A. Sharma and S. K. Sahay. Evolution and detection of polymorphic and metamor-
phic malwares: A survey. International Journal of Computer Applications, March
2014.

S. Singh. Breaking the sandbox. 2014.

O. Sukwong, H. Kim, and J. Hoe. Commercial antivirus software effectiveness: An
empirical study. Computer, March 2011.

P. Szor. The art of computer virus research and defense. Pearson Education, 2005.
C. Wressnegger, K. Freeman, F. Yamaguchi, and K. Rieck. Automatically inferring
malware signatures for anti-virus assisted attacks. In Proceedings of the ACM Asia
Conference on Computer and Communications Security. ACM, 2017.



	Extended Abstract: Toward Systematically Exploring Antivirus Engines

