SyML: Guiding Symbolic Execution Toward Vulnerable States
Through Pattern Learning

Nicola Ruaro Lukas Dresel Kyle Zeng
ruaronicola@ucsb.edu lukas@ucsb.edu zengkyle@asu.edu
UC Santa Barbara UC Santa Barbara Arizona State University
Tiffany Bao Mario Polino Andrea Continella
tbao@asu.edu mario.polino@polimi.it a.continella@utwente.nl

Arizona State University

Politecnico di Milano

University of Twente

Stefano Zanero Christopher Kruegel Giovanni Vigna
stefano.zanero@polimi.it chris@ucsb.edu vigna@ucsb.edu
Politecnico di Milano UC Santa Barbara UC Santa Barbara
ABSTRACT CCS CONCEPTS

Exploring many execution paths in a binary program is essential to
discover new vulnerabilities. Dynamic Symbolic Execution (DSE)
is useful to trigger complex input conditions and enables an ac-
curate exploration of a program while providing extensive crash
replayability and semantic insights.

However, scaling this type of analysis to complex binaries is
difficult. Current methods suffer from the path explosion problem,
despite many attempts to mitigate this challenge (e.g., by merging
paths when appropriate). Still, in general, this challenge is not yet
surmounted, and most bugs discovered through such techniques
are shallow.

We propose a novel approach to address the path explosion prob-
lem: A smart triaging system that leverages supervised machine
learning techniques to replicate human expertise, leading to vulner-
able path discovery. Our approach monitors the execution traces
in vulnerable programs and extracts relevant features—register
and memory accesses, function complexity, system calls—to guide
the symbolic exploration. We train models to learn the patterns
of vulnerable paths from the extracted features, and we leverage
their predictions to discover interesting execution paths in new
programs.

We implement our approach in a tool called SYML, and we evalu-
ate it on the Cyber Grand Challenge (CGC) dataset—a well-known
dataset of vulnerable programs—and on 3 real-world Linux bina-
ries. We show that the knowledge collected from the analysis of
vulnerable paths, without any explicit prior knowledge about vul-
nerability patterns, is transferrable to unseen binaries, and leads
to outperforming prior work in path prioritization by triggering
more, and different, unique vulnerabilities.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

RAID °21, October 6-8, 2021, San Sebastian, Spain

© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9058-3/21/10.

https://doi.org/10.1145/3471621.3471865

+ Computing methodologies — Symbolic calculus
algorithms; Supervised learning by classification.

KEYWORDS

Symbolic execution, Vulnerability discovery, Machine learning

ACM Reference Format:

Nicola Ruaro, Lukas Dresel, Kyle Zeng, Tiffany Bao, Mario Polino, Andrea
Continella, Stefano Zanero, Christopher Kruegel, and Giovanni Vigna. 2021.
SyML: Guiding Symbolic Execution Toward Vulnerable States Through
Pattern Learning. In 24th International Symposium on Research in Attacks,
Intrusions and Defenses (RAID °21), October 68, 2021, San Sebastian, Spain.
ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/3471621.3471865

1 INTRODUCTION

Automated vulnerability analysis systems are hard to develop and
deploy in the real world; they tend to be guided by carefully bal-
anced (and often not clearly understood) theoretical trade-offs to
maintain feasibility. There are two main areas where such trade-offs
must be made [31]:

e Replayability: static analyses create an offline (without ex-
ecution) model of the application; they then apply heuristics
and formal methods to find a potential vulnerability in a
specific module, but cannot precisely trigger its execution.
Dynamic analyses, instead, can execute the entire applica-
tion, and, therefore, they can reason about the execution
path that needs to be followed to trigger a vulnerability.

e Semantic insight: concrete analyses cannot reason about
the program in semantically meaningful ways; they are not
designed to understand which part of the input causes the
application to behave in a specific way. On the other hand,
a symbolic analysis can determine the specific portions of
input responsible for certain program behaviors, resulting
in a better semantic understanding.

Dynamic Symbolic Execution (DSE) is a promising approach for
vulnerability discovery [4]. This technique executes the program in
an emulated environment and in the abstract domain of symbolic
variables, providing both semantic insight and replayability. As this
approach emulates the application, it tracks the state of registers

https://doi.org/10.1145/3471621.3471865
https://doi.org/10.1145/3471621.3471865

RAID °21, October 6-8, 2021, San Sebastian, Spain

and memory. Whenever the execution hits a conditional branch
and both conditions—the branch condition and its negation—are
satisfiable, the execution forks and follows both paths, keeping track
of the accumulated path constraints. DSE provides exceptionally
high semantic insights into the target application, and can use the
accumulated path constraints to produce an input that triggers a
specific program state.

However, dynamic symbolic execution techniques suffer from
very limited scalability due to the well-known path explosion prob-
lem. Since every branch results in the creation of new paths, the
number of possible paths increases exponentially with the number
of branch instructions (see case 0 from Figure 1). Consequently, DSE
has to limit the exploration to only a selected subset of execution
paths, according to the amount of time and resources available.

There have been a number of attempts to mitigate the path
explosion problem. Symbolic-assisted fuzzing offloads much of the
processing to faster fuzzing techniques while retaining semantic
insight [17, 33]. Under-constrained Symbolic Execution executes only
parts of an application, giving up the replayability of detected
bugs in exchange for scalability [16]. Merging of execution paths
uses static symbolic execution techniques to over-approximate and
merge different states when an appropriate condition is satisfied [3,
20, 30]. Path prioritization uses heuristics or traversal algorithms to
find promising or less-explored paths [7, 21]. Interleaved Symbolic
Execution provides the human analyst with an interface to combine
concrete and symbolic execution [18].

However, all of the proposed techniques rely on specific metrics
(e.g., edge coverage) to score and prioritize execution paths, which
fail to take into account the patterns of paths that lead to vulner-
abilities, and therefore do not capture the likelihood of the paths
to exercise a bug. For this reason, such techniques often lead only
to the discovery of few shallow vulnerable states, highlighting the
need for more sophisticated and practical solutions to survive path
explosion [33].

In this paper, we explore the effectiveness of novel path priori-
tization techniques, introducing a new approach based on pattern
discovery and learning.

Prior work on path prioritization is broadly classified into two
categories [23]. First, classic tree-traversal techniques such as
Depth-First Search, Breadth-First Search, and Random Search are
well-covered in the literature. They do not involve any knowledge
of the program and are usually not practical when exploring
complex programs. Second, heuristic-based techniques, such as
KLEE’s Coverage-Optimize [9], AEG’s Loop Exhaustion [2], and
Subpath-Guided Search [21], make use of specific metrics (e.g.,
coverage or loop behavior) to score and prioritize paths.

However, statically designed metrics are not generic enough.
Prioritization heuristics often focus on a specific type of vulnerabil-
ity: for example, coverage-based approaches are good at triggering
logic vulnerabilities, but unlikely to find a memory corruption !. On
the contrary, loop-based approaches are good at triggering memory
corruption vulnerabilities, but unlikely to trigger a very specific

!Memory corruption vulnerabilities often require one to execute repeatedly a portion
of the program. Research in the field of fuzz testing [39] shows that coverage can be
an effective metric to trigger this type of vulnerabilities. However, this is not true for
a coverage-driven pure DSE engine due to the speed disparity between fuzzing and
concolic execution.

N. Ruaro, et al.

char username[100];
int admin = 0;

switch (choice) {
case 0:

fgets(username, 100, stdin);
for (int 1 = 0; i < 100; i++)
if (username[i] == 'A")
counter ++;
break;
case 1:

printf("Welcome!");
break;
case 2:

gets(username);
if (authenticate(username) == 1) {
admin = 1;

3
if (admin == 1) {
privileged_function();

}

Figure 1: A three-way switch statement. Only one of the
branches contains an interesting function call, while the
other branches are either uninteresting or are causing path
explosion.

use-case. As a result, it is difficult for such approaches to detect
different types of bugs.

Our Approach. In this paper, we propose a different approach,
based on the extraction of features characterizing execution paths,
functions, basic blocks, and connected components. By leveraging
supervised machine learning techniques, we discover and learn the
patterns of vulnerable paths. The robustness of this approach comes
from its potential to gain insights into the nature of vulnerabilities,
rather than providing possibly superficial heuristics to prioritize or
merge execution paths.

The key intuition is that programs with similar bugs often have
similarly dysfunctional execution states, characterized by a specific
set of features—such as sequences of API calls, memory derefer-
ences, very complex functions, or loop behaviors. This approach
attempts to replicate a human analyst’s expertise by recognizing
paths that are more likely to lead to a security bug (see case I and
case 2 from Figure 1).

We model our prioritization technique without any explicit prior
knowledge about vulnerability patterns: we show that the knowl-
edge gathered from the analysis of vulnerable traces is transferrable
to unseen programs, and successfully guides the exploration to
trigger a broad range of vulnerabilities, including some that went
undetected by existing techniques.

We evaluate our technique on the Cyber Grand Challenge (CGC)
dataset [32], composed of 232 distinct binaries with more than 400
distinct crashing inputs, showing that our approach can effectively
prioritize promising paths, resulting in a broad range of triggered

SyML: Guiding Symbolic Execution Toward Vulnerable States Through Pattern Learning

vulnerabilities. Our system, SYML, can identify and trigger 18 dis-
tinct vulnerable behaviors in the CGC programs under test, while
the best technique from the related work can only trigger 11. SYML
does not only trigger more vulnerabilities than any other technique,
but it is also significantly less biased and can trigger 3 vulnerabil-
ities that are undiscovered when combining results from all the
previous techniques.

As a final step, we evaluate SYML on 3 real-world Linux CVEs,
showing that the knowledge learned from the CGC dataset can be
effectively transferred to unseen Linux binaries.

In summary, we make the following contributions:

e We propose a novel approach, based on supervised machine
learning, for path prioritization in symbolic execution. Our
primary intuition is that execution paths in programs that
lead to similar bugs share similar, predictable features.

e We implement our approach in SYML, a system able to guide
the symbolic exploration toward vulnerable states.

e We evaluate our approach on the CGC dataset (arguably one
of the most robust datasets for automated analysis valida-
tion), showing that SYML outperforms prior work in path
prioritization by triggering more unique vulnerabilities.

e We evaluate SYML on 3 real-world CVEs affecting Linux
binaries, and we effectively transfer the models learned on
the CGC dataset to achieve a better prediction accuracy.

In the spirit of open science, we make our code available at
https://github.com/ucsb-seclab/syml.

2 PATTERN LEARNING

Intuitively, we expect legitimate programs to have a very low den-
sity of vulnerable paths, with more than 80% of the bugs found
in less than 20% of the code [22]. Moreover, a vulnerable path is
not only characterized by the last few executed blocks. It is often
very context-dependent, meaning that only a very particular con-
text (e.g., register and memory values) can trigger the vulnerability
when executing the vulnerable code.

For this reason, it is the cumulative set of branching choices that
ultimately distinguishes a good strategy from a bad strategy in DSE.
Smart choices lead to interesting contexts and code regions; poor
choices cause the analysis to wander toward uninteresting code.

We observe that distinct vulnerable code paths often contain
similar programming patterns (e.g., specific input/output functions,
specific sequences of instructions) and can be summarized and
characterized using a finite number of features. Machine learning
is well-suited to reason on existing data, figure out good indicators
for vulnerable paths, and provide accurate predictions on unseen
samples. We can then use such predictions to steer symbolic ex-
ecution to more interesting contexts, eventually triggering more
complex vulnerabilities.

This section presents the rationale behind our feature choice
and the steps we performed to transform these features into rea-
sonable numeric vectors. Considerations on the dataset, training,
and validation infrastructure are left to Section 3.

RAID °21, October 6-8, 2021, San Sebastian, Spain

Figure 2: The feature extraction strategy leverages both the
execution history and a forward moving window to inject
context into the branching states. Each node represents a ba-
sic block in the CFG.

2.1 Feature Selection

As anticipated in the previous paragraphs, we consider the path
prioritization problem as a branch prediction problem. Therefore,
we represent the execution flow as a set of branching choices, where
any branching state is associated with a set of features. Features can
capture the current execution context while ignoring any program-
specific noise, such as uninteresting fluctuations in register values
or very complex operations. Table 1 presents a comprehensive list
of the features that we use, with a brief description and motivation.

The feature extraction strategy leverages both the execution
history and a forward moving window to inject context into the
branching states: information relevant to such states is enriched con-
sidering up to MAX_WSIZE future states that belong to the branch 2.

Table 2: Average window exploration times and F1-Score
measures for multiple window sizes.

Window Size 0 2 5 10 20
Exploration Time 0.01s 0.23s 0.38s 0.57s 0.77s
F1-Score (RandomForest) 92% 92% 86% 83% 82%
F1-Score (AdaBoost) 92% 93% 86% 83% 83%
F1-Score (XGBoost) 91% 94% 89% 86% 85%

Taking Figure 2 as an example, suppose a MAX_WSIZE of 2. After
reaching state {2}, we pause symbolic execution and create two
new training data points for states {3} and {6}.

The new data points are marked as NON-TAKEN or TAKEN (F1)
to reflect which path was actually executed, and are loaded with
local information (i.e., internal to the states) that summarize the
branch’s short-term behavior. Features (F2) to (F5) summarize the
importance of the states in the program control flow, as well as
the characteristics of the current function. Features (F6) and (F7)
provide context about the control flow choices in the branch.

We then enrich both data points with historical information from
the same past execution states {0, 1} and parent state {2}. Feature
(FO0) indicates whether the branch was already visited, summarizing
the exploration’s past behavior.

Finally, we restart symbolic execution, and we enrich state {3}
with forward information from window {4,5} and state {6} with
2The information contained in the forward window is meant to provide a good sum-
mary of the branch behavior. The rationale behind this choice is to capture contextual

information without necessarily explorating the entire branch, which would poorly
affect performance.

https://github.com/ucsb-seclab/syml

RAID °21, October 6-8, 2021, San Sebastian, Spain

N. Ruaro, et al.

Table 1: List of our features, together with their description and rationale. States refer to the example in Figure 2.

Feature Description

Rationale

PAST (i.e., states {0,13})

(FO) num_branch_visits

Number of times this branch was already visited.

It can be important for the exploration to repeatedly traverse
an already visited branch (or explore a new one).

BRANCHING STATE (i.e., states {3} and {6})

(F1) taken Whether the branch is taken.

(F2) connectivity Number of states connected in the CFG.

High connectivity indicates that the state is important for
the program’s control flow.

(F3) centrality Centrality of the state in the CFG.

High centrality indicates that the state is important for the
program’s control flow.

(F4) function_size Size of the current function.

Very large functions are a symptom of bad programming
practices.

(F5) function_complexity

Cyclomatic complexity of the current function.

Very complex functions are a symptom of bad programming
practices.

(F6) leave_component
a loop).

Whether the branch is leaving the current component (e.g., Depending on the context and functions involved, it can

be important to either stay or leave the current component
(e.g., to continue processing input, or allocate a new object).

(F7) leave_community
a set of similar functions).

Whether the branch is leaving the current community (e.g., Since each community represents a different logical subsys-

tem in the program, it can be important to stay or leave the
current subsystem.

BRANCH (i.e., states {4,5} and {73})

(F8) registers_read_write Number of register reads and writes.

Indicates how the program is interacting with the environ-
ment.

(F9) memory_read_write Number of memory reads and writes.

Indicates how the program is interacting with the environ-
ment.

(F10) address_concretizations Number of address concretizations.

Indicates how the program is interacting with the environ-
ment.

(F11) num_calls

Number of function calls that appear in this branch.

Indicates how the exploration is interacting with the pro-
gram.

(F12) num_returns

Number of return statements that appear in this branch.

Together with the number of calls, it indicates how the
exploration is interacting with the program.

(F13) num_syscalls

Number and type of system calls that appear in this branch. Can be leveraged together with context information to trig-

ger specific program behaviors.

(F14) num_communities

Number of communities that are traversed in this branch.

Indicates how the exploration is moving between different
logical subsystems in the program.

forward information from window {73}. Features (F8) and (F14)
represent the future and long-term behavior of the branch and its
interactions with the environment.

The final value that we use for MAX_WSIZE is 2 states. The choice
of this window size is driven by both accuracy and performance
reasons. Table 2 presents the average exploration times and F1-
score measures for different window sizes, ranging from 0 to 20
states. We obtain such measures from an analysis of the entire
dataset—both the dataset and the analysis system are explained in
detail in the following sections. Since the exploration times increase
steadily with larger window sizes, and since we observe a peak in
the accuracy of the models with a window of size 2, we decide to
use a MAX_WSIZE of 2 for the following experiments.

2.2 Feature Preparation

Algorithms do not learn as humans do. Computers cannot directly
reason upon natural language, words, and complex data structures.
This section describes the non-obvious assumptions and transfor-
mations used to represent all our features conveniently.

Our feature set contains two main types of complex data: com-
munities and syscalls.

Communities represent a logical partitioning of connected sub-
systems in the target program’s call graph. Figure 3 presents an ex-
ample of the communities for the program CADET_00001. Each com-
munity is a subset of the program’s functions that maximizes mod-
ularity (connections within the same community are dense, while
connections between different communities are sparse). Specifi-
cally, we compute the community partitions using the Louvain

SyML: Guiding Symbolic Execution Toward Vulnerable States Through Pattern Learning

Figure 3: Examples of Louvain communities partitions for
the program CADET_00001, where each node represents a
function in the program. Functions with a strong relation-
ship in the program’s call graph are clustered together.

algorithm [6]. As a result, communities will cluster together func-
tions that are well interconnected and have a strong relationship
in the call graph.

Communities are challenging to represent as they are different
for each program and, therefore, they are not easily learned by our
models. We decide to summarize communities with two distinct
features, num_communities represents the number of traversed
communities in the current branch, and leave_community indicates
whether the exploration moves from one logical subsystem to an-
other.

Similarly, we represent syscalls with the feature num_syscalls,
which indicates the total number of syscalls in the current branch.

3 MODEL PREPARATION
3.1 Dataset

The dataset we choose for training and validation is the Cyber
Grand Challenge (CGC) dataset [32], composed of 232 vulnerable
programs with more than 400 distinct crashing inputs triggering
a wide range of vulnerabilities. In particular, due to the shortcom-
ings of our DSE engine and symbolic re-tracing framework (see
Section 6), some of the vulnerabilities cannot be analyzed and are
not in our training set. Specifically, 29 of the binaries could not
run in our DSE engine, and desynchronizations in the re-tracing
framework limit our training set to 120 vulnerabilities across 75
binaries. Such inaccuracies in the DSE engine affect all the bina-
ries and vulnerability classes equally. Therefore, the distribution of
vulnerabilities in our training set remains unaffected. It is out of
the scope of this paper to address such issues, which are described
in more detail in Section 6. Nonetheless, we do not restrict the ex-
ploration to the binaries in our training set, and we validate every
technique (including SYML) against the entire dataset.

To select a good dataset, we took into account several aspects,
which motivate our choice. Volume: it is empirically known [15]
that the volume of available data is crucial to machine learning since
it directly allows us to tackle more ambitious problems. Variety:
learning from various binaries, subject to many different classes of
vulnerabilities, allows models to generalize. Consistency: binaries

RAID °21, October 6-8, 2021, San Sebastian, Spain

compiled from different languages, different architectures, or with
different compilers result in a noisy dataset. Complexity: simple
binaries individually crafted to be vulnerable would result in over-
fitting the dataset. Confidence: we should have a solid knowledge
of every vulnerability present in the binaries, along with relevant
crashing inputs.

On these premises, the CGC corpus, along with crashing inputs
and well-documented vulnerabilities, creates a robust training set.
First, the challenge binaries are complex programs such as games,
content management systems, and image processors [1]. Indeed,
to be effective, analysis tools must process software with a low
bug density. Second, instead of injecting additional synthetic bugs
into existing programs [14], every vulnerability in this corpus is
designed and documented with high confidence, creating a reliable
ground truth for our algorithms.

3.2 Feature Extraction

Feature extraction is where we transform binaries and crashing in-
puts into a relevant set of features. The high-level process consists of
three steps: concrete tracing, static analysis, and Dynamic-Symbolic
tracing.

Concrete Tracing. First, we run all binaries in the QEMU [5]
emulator and test them against the set of crashing inputs. This
results in a collection of multiple execution traces. The execution
traces contain only a list of the executed basic blocks, as opposed
to other concrete tracing approaches [23] that also keep track of
nondeterministic events during the execution.

Static Analysis. We then collect static global information, such
as the Control Flow Graph (CFG), to support future analyses. We
align the basic blocks in the CFG (i.e., normalization) to match the
execution blocks used by the QEMU emulator and guarantee that
there is no overlap between any two basic blocks.
Dynamic-Symbolic Tracing. Finally, we symbolically execute the
crashing binaries using angr’s Tracer exploration technique [31],
which forces the execution to follow the recorded trace. Symbolic
execution is virtually interrupted at each fork (i.e., when reaching a
branch), and a new data point is created for every resulting branch.

3.3 Cleaning the Data

During Dynamic-Symbolic Tracing, we extract and prepare our fea-
tures. After creating all the training data points, we systematically
clean the dataset from missing values, outliers, anomalous values,
and duplicates.

Missing values, such as NaN and Null, are replaced with zeroes as
they are associated with either a block with no successors (i.e., a
leaf node in the CFG) or an empty block (i.e., syscalls).

Outliers and infinite values are adjusted to lie in the 2nd to
98th percentile range to enforce more stable models.

Duplicated data points are removed from the dataset. Moreover,
because of the limited feature set, some execution states are different
but indistinguishable in practice. In particular, some loop iterations
result in two identical data points except for the taken field. Since
it is improbable—and undesirable—for the models to learn to follow
a loop for a precise number of times, this is handled by ignoring
the exit branch. The models’ priority remains to find vulnerable

RAID °21, October 6-8, 2021, San Sebastian, Spain

program regions, while we defer the control over loop iterations to
the prioritization framework presented in Section 4.

As a final step, we normalize all features with respect to the
forward window size (MAX_WSIZE).

3.4 Training

We frame the prediction problem as a supervised classification
problem. We aggregate all the branch decisions observed during
the analysis to create our training set, and we train each model to
predict whether or not a branch should be taken to reach a vulner-
ability. The metrics that we consider to evaluate our classification
models are F1-Score, Accuracy, Coverage, and Time-to-Score—i.e., the
time spent generating a prediction.

F1-Score, denoted by Fj, is the weighted average of Precision (the
fraction of relevant blocks among the retrieved blocks) and Recall
(the fraction of the total amount of relevant blocks retrieved). We
use this metric to evaluate our classification models as it is widely
used in the literature.

Precision - Recall
Fi=2 0
Precision + Recall
Accuracy is the number of correct predictions over the total
number of training data points. More accurate models result in
better decisions; this makes accuracy one of the standard metrics
in machine learning.

Correct Predictions
Data Points

Accuracy =

Trace Coverage is a non-standard metric representing the fraction
of blocks in the execution trace that we predict at least one time
correctly. Basic blocks are often executed multiple times, either in a
loop or as the result of repeated function calls. Therefore, the correct
prediction of one frequent branch can have a high impact on the
measured accuracy. Our intuition is that we want the models to be
accurate across the binary and traverse it without critical prediction
errors. Correct predictions must be spread across all functions,
eventually covering most of the basic blocks in the execution trace.

Distinct(Correct Predictions)
Distinct(Execution Trace)

TraceCoverage =

We evaluate the classification models using cross-validation at
the granularity of individual binaries. During each cross-validation
round, one single binary is kept out from the training set, regardless
of the number of vulnerabilities it contains. As a result, the models
cannot learn any pattern from other vulnerabilities in the left-out
binary, which reduces biases. We then train and validate each model
against each binary, extracting F1-Score, Accuracy, Coverage, and
Time-to-Score measures. The iteration of this process for n cross-
validation rounds, with n equal to the number of binaries, prevents
the models from overfitting and assesses their ability to generalize
over different binaries.

N. Ruaro, et al.

~

Dataset

N-1 Binaries X
cleaning

Concrete
tracing

Crashing
inputs

DSE tracing

[Static Feature]
analysis extraction) Training
v

m Exploration\‘— Model

[«— Nth Binary
Crash Feature Static o
o . . Prioritization
monitoring] |extraction analysis .
Y, strategies

Figure 4: Information flow for the overall approach.

4 GUIDED SYMBOLIC EXECUTION

This section presents the strategies, optimizations, and overall
framework that we use to prioritize paths and explore vulnera-
ble programs by efficiently leveraging the trained models.

Figure 4 presents the information flow for our overall approach.
In previous sections, we described that vulnerable binaries and
crashing inputs are executed concretely to determine the execution
traces. We then emulate these execution traces in the symbolic
domain and extract a list of features—the dataset. After preparing
the dataset (Section 3.3), we train a group of supervised learning
models, and we leverage the predictions of the learned models to
obtain scores and guide the symbolic execution.

However, predictions are not perfect, and the search space is
often large. Therefore, it is necessary to employ a resilient and
effective strategy, make the best possible use of predictions, and
reliably discriminate between interesting and uninteresting paths.

4.1 Performance Considerations

Extracting features and retrieving a prediction (either TAKEN or
NON-TAKEN) should not cause a dramatic slow-down in the analysis.
However, depending on the number of features, the complexity
of features, and the complexity of models, feature extraction time
and time-to-score can grow and become the bottleneck for the
analysis. These considerations led us to two main trade-offs between
scalability and performance.

Initial overhead. To avoid excessive overhead during the explo-
ration, we pre-compute features independent from the context as
an initial overhead, and we re-use them whenever they are needed
by the analysis. Features that are initially computed are connectivity,
centrality, function size, function complexity, components informa-
tion, and communities partitions.

Number of features. Having a high number of features is harmful
to both computation time and model accuracy [15]. For this reason,
we use information gain to manually inspect all our features and
ensure that they are both non-redundant and relevant. As a result,
every feature in the final feature set (see Table 1) contributes to
discriminate TAKEN and NON-TAKEN branches. For example, features
that we found irrelevant are syscalls_terminate and syscalls_random.
These features are ignored for both the training and the exploration
stages, resulting in both more efficient feature extraction and more
effective models that provide quick predictions.

SyML: Guiding Symbolic Execution Toward Vulnerable States Through Pattern Learning

input: program, model, strategy
output: crashing_input

begin
simgr « new simulation_manager(program)
static_info «— do_static_analysis(program)
featurizer < new featurizer(static_info)

while len(simgr.active) > 0
simgr.step()

fors in simgr.active
if is_crashed(s)
simgr.crashed « s
return s.posix.stdin

if len(simgr.active) > 1

features « featurizer.get_features(simgr.active)
scores «— model.score(features)
update_scores(simgr.active, scores)

simgr.deferred « simgr.active
simgr.active « strategy.choose(simgr.deferred)
end

Figure 5: Pseudocode of the exploration technique.

4.2 Exploration Technique

During the analysis, we represent the execution with three mutable
path stashes: active, deferred, and crashed. The stash is the
structure that we use to store and organize the execution states,
and any state resulting from symbolic execution is stored in one of
these three stashes.

(1) States are put in the active stash if and only if they are
considered good enough to be prioritized. Only one state at
a time can be in the active stash.

(2) States are put in the deferred stash if they are not the cur-
rent choice but may be chosen shortly. Due to memory con-
straints, we set a size threshold for the deferred stash. When
the number of states gets over this threshold, we discard
them according to the prioritization strategy.

(3) States are put in the crashed stash if and only if they are
causing the program to crash.

Figure 5 presents an overview of how we implement the
exploration technique in practice. Initially, our system creates
a simulation manager object. The simulation manager is a
control interface used by the angr DSE engine to handle multiple
program states and stashes simultaneously. We store the program’s
static information, such as the CFG, in the static info object,
and we use it to initialize the featurizer object. During the
symbolic exploration, whenever we hit a new branch, we use the
featurizer object to extract its features and update its score
based on the model’s prediction. We store all the potentially
interesting branches in the deferred stash. After each execution
step, we apply the provided prioritization strategy to select and
move the most interesting execution state to the active stash.
When an execution state crashes, we store it in the crashed stash
and return its concretized input.

RAID °21, October 6-8, 2021, San Sebastian, Spain

The exploration technique is, in summary, a set of rules which
rigorously define how to move the states between the active,
deferred, and crashed stashes.

4.3 Prioritization Strategies

During the feature extraction stage, as described in Section 3.2, ev-
ery branch leads to the creation of a new candidate path. We refer to
the set of candidate paths as the deferred stash, and prioritization
strategies define an order relation over this set.

The strategy used for prioritization is at least as important as

the predictions themselves. Spotting false positives is crucial to
avoid path explosion and not to mislead the analysis. Spotting false
negatives, on the other hand, is crucial to avoid de-prioritizing
vulnerable paths.
Moving stats. Our system always uses scores with a per-path
granularity. The score of each branching choice is a floating-point
number and coincides with the model prediction. However, when
referring to a particular path, we refer to the combined score of its
branching choices, which is updated whenever a new step affects
the path in question. In particular, the statistic that shows the best
results is a moving average with a small sliding window (N=2).

N

- 1
score(p) = N Z SCOTe€p n_branches—i
i=0

Vp edeferred

The choice of a small sliding window gives more importance
to new branches and helps in prioritizing paths with good scores
without over or under-prioritizing paths after a single wrong pre-
diction.

Our approach uses two different prioritization strategies.
FAST Strategy. This strategy recursively queries the models, treat-
ing scores as an absolute value and prioritizing only the top-scored
path.

next = argmax {score(p)}
pedeferred

BALANCED Strategy. Sometimes paths are very similar, and hav-
ing more than one promising path is possible. Therefore, this strat-
egy uses scores as a probability measure.

Pr(next=p) = score(p) Vpedeferred

While the FAST strategy would force the analysis to pick only
the highest score, the BALANCED strategy makes a weighted choice
to pick one path among the most promising ones.

Similarly to what KLEE [9] does, we interleave the two strategies
to improve the overall effectiveness and protect against cases where
an individual strategy gets stuck.

5 EVALUATION

We evaluated SYML and compared it against the state-of-the-art
approaches in path prioritization by integrating and running each
technique in the angr framework. In particular, we compared
against KLEE Random search [9], KLEE Coverage Optimize
search [9], and AEG Loop Exhaustion search [2]. Additionally, we
performed a detailed analysis of the scores that SYML is able to
produce.

RAID °21, October 6-8, 2021, San Sebastian, Spain

Random Forest
XGBoost

function_complexity

num_branch_visits
40

leave_component
30

mem_access / communities
/

[\
/

| |
‘ = 7

\ |
\

syscalls \ calls_returns

connectivity reg_access

centrality

Figure 6: Feature importance measurements for the XG-
Boost and Random Forest models, reflecting the percentage
score variations induced by each feature. Higher values in-
dicate that the feature is more influential in the predictions
of the model.

5.1 Experimental Setup

Before taking any further steps into the analysis, we must appropri-
ately set up the execution environment. More precisely, we initialize
the DSE environment and enable the options to force a strict page
access policy and NX memory protection as a heuristic to moni-
tor the execution and detect crashing states. Furthermore, we use
QEMU to trace suspicious states that emerged during the execution
(e.g., unconstrained, dead-ended) and identify additional undetected
crashes.

As discussed in Section 3.3, the control over loop iterations is
left to this framework and explicitly handled using a hard limit on
consecutive loop iterations. We perform static analyses as a fixed
initial overhead, and we collect the CFG along with static infor-
mation about functions (e.g., size, complexity, syscalls) and other
components (e.g., loops, communities). The information collected
from these analyses is used throughout the execution as the input
for feature extraction.

We run our experiments on an Ubuntu 18.04 system with a
maximum clock frequency of 3.6GHz and a memory limit of 8GB of
RAM per process. We assign one CPU core for the analysis of each
binary. Finally, we run and monitor all the techniques for 24 hours.

5.2 Model Accuracy and Feature Evaluation

We train and validate multiple machine learning algorithms: Logis-
tic Regression, Linear Discriminant Analysis, K-Nearest Neighbors,
Support Vector Machines, Multi-Layer Perceptrons, Decision Trees,
Random Forests, AdaBoost, and XGBoost. In particular, all models
are instantiated using the scikit-learn machine learning frame-
work [28]. As described in Section 3.4, we evaluate the classification
models using cross-validation. During each cross-validation round,
one single binary is kept out from the training set, regardless of the
number of vulnerabilities it contains. We present the results from
the cross-validation in Table 3.

N. Ruaro, et al.

The Random Forest and XGBoost models achieve the best re-
sults on our dataset in terms of both Accuracy and Trace Coverage.
The Accuracy scores are 90% for the Random Forest model and
93% for the XGBoost model. The Trace Coverage scores are 90%
and 91%, respectively. We associate higher Accuracy scores with
better decisions, as described in Section 3.4. Similarly, we associate
higher Trace Coverage scores with greater robustness of the model
predictions. In particular, the Trace Coverage of Random Forest and
XGBoost is much higher than the rest of the models, indicating that
both are robust and well-suited to guide symbolic execution.

These models are also relatively simple and highly interpretable.
We evaluate the importance of different features by computing
their permutation importance [8], an estimation method based on
the score variation induced by each feature. Figure 6 presents the
feature importance measures for the XGBoost and Random Forest
models.s We observe that not all features are equally important.
Features that contribute the most to the classifiers’ predictions
are the number of branch visits, communities, and register
access, and leave component. Other features, such as syscalls,
are influential for other models but do not contribute much to these
models’ splitting conditions.

Finally, hyper-parameters for the best model are tuned using a
validation set. We use an initial random search to explore possible
configurations due to the high-dimensionality of the parameter
space. We then exhaustively search the restricted parameter space
to ensure the most desirable configuration.

The main hyper-parameters that we tune for the Random
Forest model are: the data points sampling method used for
each tree (bootstrap), the maximum number of trees in
the forest (num_estimators), the maximum depth of each
tree (max_depth), and the maximum number of features
considered to split a node (max_features). Similarly, the
hyper-parameters tuned for the XGBoost model are: bootstrap,
num_estimators, max_depth, and min_child_weight. Most of
these hyper-parameters are described in the previous paragraphs.
Additionally, min_child_weight expresses a limit on the number
of data points that each node must contain.

We select the XGBoost model as our final model because of its
better accuracy and shorter time-to-score. The resulting model uses

Table 3: Average values for the F1-Score, Accuracy, Trace
Coverage, and Time-to-Score metrics after multiple rounds
of cross-validation on CGC binaries.

Model F1 Accuracy Trace Time-to-
Coverage Score

LogRegr 77% 66% 73% 0.01s
LinDiscr 76% 68% 75% 0.01s
KNN 79% 63% 70% 0.1s
SVM 82% 76% 72% 0.04s
MLP 81% 80% 68% 0.04s
DecisionTree 85% 80% 78% 0.02s
RandomForest 92% 90% 90% 0.32s
AdaBoost 93% 91% 83% 0.02s
XGBoost 94% 93% 91% 0.2s

SyML: Guiding Symbolic Execution Toward Vulnerable States Through Pattern Learning

150 estimators, with the maximum depth of each tree limited to
2, and a minimum number of 6 data points in each node. For a
more in-depth description of each parameter, please refer to the
scikit-learn [28] documentation.

5.3 Comparison with Existing Techniques

We compare our approach with state-of-the-art techniques in path
prioritization. To avoid introducing bias in our comparison, we
implement all the path prioritization techniques in the same frame-
work (i.e., angr). This allows us to exclude external factors (e.g.,
degree of formula approximation, level of preprocessing, imple-
mentation of the symbolic function stubs) that are intrinsic to the
symbolic execution framework. We implement each technique re-
ferring precisely to both the authors’ description and its reference
implementation, if publicly available [9].

All the techniques are appropriately initialized and run without
interruptions, as explained in Section 5.1. Moreover, we repeat the
experiment two times and consider the average time to crash for
all the vulnerabilities triggered in both repetitions.

RAID °21, October 6-8, 2021, San Sebastian, Spain

KLEE Coverage Optimize [9]: this strategy attempts to select
states likely to cover new code in the immediate future. The heuris-
tic used to compute a weight for each path combines the minimum
distance to an uncovered instruction and whether the path has re-
cently covered any new code.

KLEE Random [9]: this strategy is conceptually similar to a ran-
domized breadth-first search. It selects a path by traversing the
execution tree from the root and randomly selecting the branch
to follow at branch points. Therefore, when reaching a branching
point, each subtree’s set of paths will have an equal probability of
being selected, regardless of their size.

AEG Loop Exhaustion [2]: this strategy builds up from the intu-
ition that paths involving more loop iterations are more promis-
ing to produce memory corruption bugs, such as buffer overflows.
Whenever execution hits a symbolic loop, the loop is executed as
many times as possible until it is exhausted.

We present the results of our evaluation in Table 4 and Figure 7.
Table 4 presents a comprehensive report of our results in terms
of time-to-crash, tagged according to the class of vulnerability

Table 4: Time-to-Crash and vulnerability type for all the vulnerabilities found. SOF: Stack Buffer OverFlow, HOF: Heap Buffer
OverFlow, OBR: Out-of-Bound Read, OBW: Out-of-Bound Write, INT: Integer Overflow, TYPE: Type Confusion, PTR: Untrusted
Pointer Dereference, FMT: Format String. X indicates that the technique did not trigger any vulnerability.

Binary Vulnerability Type KLEE Coverage KLEE Random AEG Loop Exhaustion SyML
CADET_00001 SOF X X 2m 5m
CADET_00003 SOF X X 2m 6m
CROMU_00019 SOF X X 1h 8m 11h 16m
EAGLE_00005 SOF X X 2h 44m X
NRFIN_00016 SOF 1h 28m 1h 28m 12m 1h 16m
NRFIN_00016 SOF X X 1h 46m 14h 44m
NRFIN_00023 SOF X X X 3h 13m
YANQ1_00001 SOF X X 16m 17h 13m
YANO1_00016 SOF X X 1m 4m
CROMU_00006 HOF X 2h 21m X 1h 22m
CROMU_00014 HOF 1h 4m X X X
KPRCA_00057 HOF X X X 15h 41m
YANQ1_00012 HOF X X 19m X
CROMU_00012 OoBW X X 2m 18h 11m
CROMU_00036 OBW 5h 50m 3m X 40m
CROMU_00034 OBR 43m 1h 35m X 2h 55m
NRFIN_00052 INT 32m 3h 7m X 5h 46m
KPRCA_00014 INT X 54m X 2h 8m
KPRCA_00033 TYPE 12m 2h 14m 47m X
KPRCA_00015 PTR 4m 35m X X
NRFIN_00023 PTR 2m 1m X 3m
NRFIN_00039 PTR X X X 9h 6m
CROMU_00043 FMT 1h 29m X X 4h 31m
KPRCA_00038 FMT 2h 59m 14h 31m X X
DISTINCT VULNERABILITIES (24) 10 10 11 18
DISTINCT BINARIES (22) 10 10 10 16

RAID °21, October 6-8, 2021, San Sebastian, Spain

175- ~=" SYML . Y el sttt
AEG Loop Exhaustion i
—-- KLEE Random e
15.0- ... KLEE Coverage Optimize ~__--~ ‘
@125- =TT
= //
s -
5 10.0- e
- [0t
S e
= R
E R R S e e e e e ee— =
£ i
z |
5.0~)t ./.
Vol
25-F
s
0.0 - i
i i i i i ! ! !
0 200 400 600 800 1000 1200 1400

Minutes

Figure 7: Crashes [Number] over Time [Seconds]. Cumula-
tive number of vulnerabilities found during the exploration.

triggered. Overall, we triggered 24 distinct vulnerable states in 22
binaries. Figure 7 presents the progress (i.e., the cumulative number
of vulnerabilities found) of each technique during the 24 hours of
exploration. The exploration is not interrupted after the first crash,
allowing the techniques to trigger more than one vulnerability in
the same binary (see NRFIN_00016, NRFIN_00023). Moreover, we
match each crash address and stack trace with the vulnerabilities
documented in the CGC dataset. Our search strategy, SYML, trig-
gered 18 distinct vulnerabilities in 16 binaries, 6 more than the best
technique from the state-of-the-art—AEG Loop Exhaustion trig-
gered 11 crashes in 10 binaries. Our results highlight the limitations
of all current approaches. Heuristics primarily target one specific
category of bugs, and this introduces a strong bias in the analysis.

The KLEE Coverage Optimize strategy tends to trigger edge-
case vulnerabilities. It is effective in finding bugs that derive from
inadequate testing of the application. However, it is not effective in
crafting specific contexts to trigger more deep vulnerabilities.

The KLEE Random strategy performs a random exploration of
the search space. Therefore, it unreliably triggers a wide range
of shallow vulnerabilities, struggling to follow loops or specific
execution patterns.

The AEG Loop Exhaustion blindly exhausts all the symbolic
loops. Thus, it is exceptionally reliable in finding overflows and
repetitive patterns, while missing almost any other type of bug.

SYML can trigger more vulnerabilities than any other technique,
and triggered most of the vulnerabilities found by other strategies
without showing any bias toward specific classes of bugs. While
each of the techniques from the state-of-the-art has its apparent
strengths and shortcomings, SYML does not show any obvious
shortcomings. Our system can find vulnerabilities ranging from
Stack Buffer Overflows toUntrusted Pointer Dereferences
and Out-of-Bound Reads. In our experiments, it only missed the
Type Confusion vulnerability class (see KPRCA_00033). Moreover,
SYML can trigger vulnerabilities not found by any other technique

N. Ruaro, et al.

~®— Crash 0

. 640
Minutes

Figure 8: Score [Decimal Percent] over Time [Minutes]. Ex-
ample of scores distribution for the program CROMU_00012.

(see NRFIN_00023, NRFIN_00039, KPRCA_00057 from Figure 4), in-
dicating that its prioritization strategy is effective and improves
prior work results.

We notice that many vulnerabilities are still not triggered by any
technique and that most of the vulnerabilities emerge during the
first 12 hours of exploration, emphasizing that our system mitigates
the path explosion problem effectively, but not completely.

5.4 Score Analysis

We analyze SYML score distribution during the exploration. In
general, we expect the scores to increase when approaching a vul-
nerability and decrease otherwise. Our analyses confirm this expec-
tation. We find that the scores assigned by our system, SYML, are
consistent with the resulting crash patterns. As an example, Figure 8
presents the distribution of the scores from the exploration of the
CROMU_00012 program—we observe similar exploration patterns in
many of the programs analyzed. Initially, scores are relatively low
and unstable. We observe a score increase when approaching the
vulnerability, indicating that the system is increasingly interested
in the execution path. Scores reach a plateau coinciding with the
crashing point, and after a sharp drop, they are moderately stable
at the plateau point until the analysis is interrupted. Even after the
crash, scores remain high (after a short drop), indicating that the
system is still exploring an area close to the crashing point or finds
the execution path still moderately interesting.

5.5 Applications to real-world Software

We evaluate our approach on 3 real-world Linux binaries: asp2php
(CVE-2004-1261), o3read (CVE-2004-1288), and ringtonetools
(CVE-2004-1292). The 3 vulnerabilities consist of a buffer overflow
in the parsing module of each binary.

We run SYML on the 3 CVEs to extract the features and prepare
the dataset, as described in the CGC experiments. After this initial
step, we train and cross-validate different machine learning algo-
rithms. Table 5 presents our results after the cross-validation. The
model that achieves the best performance is the Random Forest
model, with an accuracy of 70% and an F1 score of 63%.

SyML: Guiding Symbolic Execution Toward Vulnerable States Through Pattern Learning

1.0

Rl
- = v N N
AR \. /./ A
0.8 A \7 \~\‘/'
// ~}(\
/ / N
/ i \
> 0
% 0.6 I’ ./ \\\ o
5 / / e R N
Soaly /T - - k
X 7
N
0.2 —-- o3read
ringtonetools
——- asp2php
0.0
0 20 40 60 80 100

Percentage of execution

Figure 9: Spline curves approximating the prediction accu-
racy [Decimal Percent] at different program points [Per-
cent] for the 3 analyzed Linux CVEs. Program points at 0%
are close to the start of the execution, program points at
100% are close to where the vulnerability is triggered.

Transfer Learning: The accuracy and F1 scores presented in Ta-
ble 5 are still not comparable with those achieved on the larger
CGC dataset. For this reason, we re-use the XGBoost model from
the CGC experiments to transfer its knowledge to this new dataset.
The accuracy obtained with such model, without any re-training,
is low. However, after updating the model’s internal state to con-
sider the new Linux dataset, we obtain an accuracy of 66% and
an F1 score of 77%. Thus, the combined model achieves the best
performance, showing promising results regarding the knowledge
transfer between the CGC dataset and the Linux dataset.
Prediction Analysis: We evaluate the accuracy of the model’s pre-
dictions at different points in the execution trace. Figure 9 presents
our results. We observe higher overall accuracy in 1 of the 3 bina-
ries (03read), and in general, high accuracy in the proximity of the
vulnerability. We believe that these results are important for two
main reasons. First, the accuracy achieved by our models shows
that we can effectively train a machine learning model that can
predict the vulnerable paths in a Linux program with good accuracy.
Second, we show that the results discussed in the previous sections
are not restricted to the CGC dataset. In fact, the semantics of CGC
binaries are analogous to the Linux x86 semantics, and this allows
us to transfer some of the knowledge learned from the larger CGC
dataset to the Linux dataset.

Table 5: Average F1-Score and Accuracy after multiple
rounds of cross-validation on Linux binaries.

Model F1 Accuracy
RandomForest (Linux) 63% 70%
AdaBoost (Linux) 63% 63%
XGBoost (Linux) 51% 56%
XGBoost (CGC) 69% 54%
XGBoost (CGC+Linux) 77% 66%

RAID °21, October 6-8, 2021, San Sebastian, Spain

6 DISCUSSION

Our experiments show that SYML introduces a novel prioritization
technique that can mitigate the path explosion problem by learning
interesting patterns from vulnerable execution paths.

Even though this work is merely the first step toward more
effective vulnerability discovery techniques, for the first time a
machine learning approach is successfully used to discern and rank
interesting branches in a DSE engine. To the best of our knowledge,
our solution is the most effective way to confront the problem.
However, the main limitation of this work is the lack of a large-scale
experiment on Linux software. It is significantly harder to emulate
a program’s execution in the symbolic domain than in the concrete
domain. Partial execution traces (without environment knowledge)
introduce inaccuracies and eventually cause the tracing process
to desynchronize, resulting in an incomplete dataset. Similarly,
inaccuracies introduced by the DSE engine can limit the exploration
and prevent the system from triggering vulnerable states. For these
reasons, and considering the current state of pure DSE systems,
it seems unfeasible at the moment to design such a large-scale
experiment with a similarly sized dataset running entirely on Linux
software.

The CGC programs are statically compiled x86 binaries, with
semantics equivalent to Linux binaries but running on a different
OS with a smaller set of system calls—DECREE. Since DSE handles
very well the simplified environment, we decided to evaluate our
approach on CGC binaries to sidestep these technical problems
unrelated to our core contribution. Nonetheless, if DSE inaccuracies
were not a concern, and with the right dataset, we believe that our
system, SYML, would be flexible enough to run on Linux software.

Future work. Pure DSE engines are still fundamentally limited, and
trying to analyze more complex programs reveals several problems.
The technique here described could be adapted and applied to guide
a Hybrid Fuzzing engine, which is in general more performant than
a pure DSE engine, and we believe would be another interesting
research direction [10, 11]. Moreover, using a different re-tracing
framework [25] can help mitigate the problem of partial execution
traces, reducing the impact of desynchronizations and allowing the
concolic tracer to scale to large Linux programs.

7 RELATED WORK

Path explosion and coverage of the program search space have been
a longstanding challenge in dynamic symbolic execution and are
addressed in the literature in different ways.

In Hybrid Fuzzing, a fuzzer (often coverage-guided) works in
tandem with symbolic execution. The low-overhead fuzzer can
quickly and efficiently explore easily reachable paths in the program.
At the same time, the more heavy-weight symbolic execution can
discover paths that random mutation would be unlikely to find due
to complex constraints.

Pak et al. [26] show how to use symbolic execution to find a broad
set of paths that the fuzzer can explore. Driller [33] proposes using
symbolic execution to provide new inputs to the fuzzer when it is un-
able to make progress. QSYM [38] concentrates on the performance
of symbolic execution and demonstrates hybrid fuzzing at-scale by
both eliminating an intermediate representation step and reduc-
ing the cost of constraint solving—by ignoring difficult constraints.

RAID °21, October 6-8, 2021, San Sebastian, Spain

Intriguer [13] shows that existing concolic executors for hybrid
fuzzing regularly suffer from unnecessary complex constraints due
to input structure invariants and hard-to-solve constraints, result-
ing in missed bugs. They propose Field-Level Constraint solving to
encode input-structure-induced constraints separately and solve
them without invoking a constraint solver. Pangolin [19] high-
lighted that existing hybrid fuzzing systems re-execute inputs from
scratch instead of recycling states between similar inputs. They
propose Incremental Hybrid Fuzzing with polyhedral path abstrac-
tion, which employs an abstract path representation to reuse states
among different symbolic execution runs.

Another popular approach to avoid path explosion is the ap-
plication of static analyses to guide symbolic execution. An
over-approximation of the interesting paths initially steers sym-
bolic execution, and it is later refined by using the path constraints
to validate specific properties.

One of the first approaches to adopt this in a lightweight manner
is Directed Symbolic Execution [24]. The authors propose to use
the control-flow graph to determine the shortest path to the target
point, and then follow it symbolically to reach the target efficiently.

Parvez et al. [27] describe a best-first-search strategy to reach a
target line in the program and combine it with static analyses to
prune paths that cannot reach the target.

Chopper [34] introduces the concept of chopped symbolic exe-
cution. Uninteresting parts of the program are skipped by human
annotation, and once a bug is found, the pieces are stitched back
together, allowing one to find bugs that are guarded by code that
causes state explosions. The authors also propose a set of static
analyses to determine which code segments to avoid.

Domain-specific static analyses can also successfully produce
paths that are verifiable by symbolic execution (e.g., static analyses
that detect multi-reads allow Xu et al. [37] to verify double-fetch
bugs across multiple functions in the Linux Kernel).

DSE can succeed on its own when it is constrained to a partial
set of functionalities or run at a granularity that allows the system
to achieve its scope before the state explosion overwhelms it.

An early general approach to constraining symbolic execution
at a function level is Under-Constrained Symbolic Execution [29].
The authors propose to analyze functions individually by allowing
for lazy resolution of data structures and pointers. This allows the
analysis to detect certain types of bugs, even when the functions
expect highly structured arguments.

Selective Symbolic Execution [12] presents a way to seamlessly
switch between executing a program symbolically and executing
it concretely. This enables symbolic analysis of large and complex
programs with non-local handling of symbolic data.

Furthermore, domain-specific approaches can successfully
reduce the search space enough for the symbolic execution
to produce results (e.g., SYMTCP [35] can synthesize packet
sequences that cause network stack operations by selectively
executing only the TCP stack code in the Linux Kernel).

Path prioritization has been the focus of a vast body of liter-
ature. Since enumerating all the paths in a program can become
prohibitively expensive, various techniques exist to guide the ex-
ploration toward more promising paths. Common strategies are
DFS, BFS, and Random Exploration. These strategies are generic and

N. Ruaro, et al.

unsophisticated, but can prove very effective and can help tailor the
search to the underlying system (e.g., limiting the memory usage,
maximizing the variety of explored paths).

Other works propose heuristics to maximize code coverage [9,
21]. The Coverage Optimize search from [9] considers metrics such
as the distance from the nearest uncovered instruction to rank
states. Similarly, Subpath-Guided search [21] prioritizes subpaths
in the control-flow graph that have been visited fewer times. Avgeri-
nos et al. [2] discuss a bug-driven search heuristic that prioritizes
loop iterations to find memory corruption errors. Other works [36,
40] use different techniques to select paths that are more suitable
to meet a particular property. Zhang et al. [40] use Finite State
Machines to prioritize paths that are likely to satisfy a pre-defined
regular property. Xie et al. [36] use fitness functions to infer the
likelihood of reaching a specific branch.

Our approach has two distinct advantages over existing tech-
niques. First, predicting the likelihood of a path exercising a bug in
the program, rather than using a proxy metric like code coverage,
implies that improvements to the prediction translate directly to
improvements in the number of bugs found. Second, rather than
relying on a manually selected set of metrics, SYML automatically
learns which features most accurately predict vulnerable code, and
can do so on a per-program basis.

Finally, the concept of path prioritization has recently extended
to hybrid fuzzing. In DigFuzz [41], the authors derived a proba-
bilistic model to predict how likely the fuzzer is to exercise a path
and then prioritized predicted hard paths for symbolic execution.
Chen et al. [11] use source code analysis and UBsan labels to iden-
tify seeds that traverse more fragile paths in the program. Similarly,
Meuzz [10] uses UBsan labels and machine learning on source code
to reason per-program and derive a suitable customized strategy
for seed prioritization.

8 CONCLUSION

This paper proposes SYML, a novel prioritization technique that
leverages supervised learning algorithms to guide symbolic exe-
cution and reach vulnerable program states. SYML can effectively
mitigate the path explosion problem and offers significant improve-
ments when compared to the state-of-the-art in path prioritization.
We evaluate our technique on the CGC dataset and compare its
performance with the current state-of-the-art in path prioritization.
Our experiments show that SYML outperforms previous work by
finding both more and different vulnerabilities. Additionally, we
evaluate SYML on 3 real-world Linux CVEs, showing that the knowl-
edge learned from the CGC dataset can be effectively transferred
to unseen Linux binaries.

Still, path explosion remains one of the toughest problems in
symbolic execution, and our work shows that there is ample space
for improvement in path prioritization techniques. While most
approaches suffer from a limited understanding of the program
logic, search strategies able to better reason on control flow choices
are on the rise, and new, different, and complementary solutions
will pave the road for more advanced techniques in automatic
vulnerability analysis.

SyML: Guiding Symbolic Execution Toward Vulnerable States Through Pattern Learning

ACKNOWLEDGMENTS

We

would like to thank our reviewers for their valuable com-

ments and inputs to improve our paper. This material is based
upon work supported by NSF under Award No. CNS-1704253. Re-
search was also sponsored by DARPA under agreements number
HR001118C0060 and FA8750-19-C-0003. The U.S. Government is
authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation thereon. The
views and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of DARPA,
the U.S. Government, or the other sponsors.

REFERENCES

(1]

=
S

[11]

[12

[13

[14

[15]

[16

[17]

[18

=
L

[20]

[21

2016. "Your tool works better than mine? Prove it". https://blog.trailofbits.com/
2016/08/01/your-tool-works-better-than-mine-prove-it/

Thanassis Avgerinos, Sang Kil Cha, Alexandre Rebert, Edward J Schwartz, Mav-
erick Woo, and David Brumley. 2014. Automatic exploit generation. Commun.
ACM 57, 2 (2014), 74-84.

Thanassis Avgerinos, Alexandre Rebert, Sang Kil Cha, and David Brumley. 2014.
Enhancing symbolic execution with veritesting. Proceedings of the 36th Interna-
tional Conference on Software Engineering (2014), 1083-1094.

Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil Demetrescu, and
Irene Finocchi. 2018. A survey of symbolic execution techniques. ACM Computing
Surveys (CSUR) 51, 3 (2018), 1-39.

Fabrice Bellard. 2005. QEMU, a fast and portable dynamic translator. USENIX
Annual Technical Conference, FREENIX Track 41 (2005), 46.

Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefeb-
vre. 2008. Fast unfolding of communities in large networks. Journal of statistical
mechanics: theory and experiment 2008, 10 (2008), P10008.

Peter Boonstoppel, Cristian Cadar, and Dawson Engler. 2008. RWset: Attacking
path explosion in constraint-based test generation. International Conference on
Tools and Algorithms for the Construction and Analysis of Systems (2008), 351-366.
Leo Breiman. 2001. Random forests. Machine learning 45, 1 (2001), 5-32.
Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. 2008. KLEE: Unassisted and
Automatic Generation of High-Coverage Tests for Complex Systems Programs.
OSDI 8 (2008), 209-224.

Yaohui Chen, Mansour Ahmadi, Boyu Wang, Long Lu, et al. 2020. MEUZZ: Smart
Seed Scheduling for Hybrid Fuzzing. arXiv preprint arXiv:2002.08568 (2020).
Yaohui Chen, Peng Li, Jun Xu, Shengjian Guo, Rundong Zhou, Yulong Zhang,
Long Lu, et al. 2019. SAVIOR: Towards Bug-Driven Hybrid Testing. arXiv preprint
arXiv:1906.07327 (2019).

Vitaly Chipounov, Vlad Georgescu, Cristian Zamfir, and George Candea. 2009.
Selective Symbolic Execution. Proceedings of the 5th Workshop on Hot Topics in
System Dependability (HotDep) CONF (2009).

Mingi Cho, Seoyoung Kim, and Taekyoung Kwon. 2019. Intriguer: Field-Level
Constraint Solving for Hybrid Fuzzing. Proceedings of the ACM SIGSAC Conference
on Computer and Communications Security (CCS) (2019). https://doi.org/10.1145/
3319535.3354249

Brendan Dolan-Gavitt, Patrick Hulin, Engin Kirda, Tim Leek, Andrea Mambretti,
Wil Robertson, Frederick Ulrich, and Ryan Whelan. 2016. Lava: Large-scale
automated vulnerability addition. 2016 IEEE Symposium on Security and Privacy
(SP) (2016), 110-121.

Pedro M Domingos. 2012. A few useful things to know about machine learning.
Commun. ACM 55, 10 (2012), 78-87.

Dawson Engler and Daniel Dunbar. 2007. Under-constrained execution: making
automatic code destruction easy and scalable. Proceedings of the 2007 international
symposium on Software testing and analysis (2007), 1-4.

Patrice Godefroid, Michael Y Levin, David A Molnar, et al. 2008. Automated
Whitebox Fuzz Testing. NDSS 8 (2008), 151-166.

Fabio Gritti, Lorenzo Fontana, Eric Gustafson, Fabio Pagani, Andrea Continella,
Christopher Kruegel, and Giovanni Vigna. 2020. SYMBION: Interleaving Symbolic
with Concrete Execution. Proceedings of the IEEE Conference on Communications
and Network Security (CNS) (2020).

Heqing Huang, Peisen Yao, Rongxin Wu, Qingkai Shi, and Charles Zhang. 2020.
PANGOLIN: Incremental Hybrid Fuzzing with Polyhedral Path Abstraction. Pro-
ceedings of the IEEE Symposium on Security and Privacy (S&P) (2020).
Volodymyr Kuznetsov, Johannes Kinder, Stefan Bucur, and George Candea. 2012.
Efficient state merging in symbolic execution. ACM Sigplan Notices 47, 6 (2012),
193-204.

You Li, Zhendong Su, Linzhang Wang, and Xuandong Li. 2013. Steering symbolic
execution to less traveled paths. ACM SigPlan Notices 48, 10 (2013), 19-32.

RAID °21, October 6-8, 2021, San Sebastian, Spain

Martin C Libicki, Lillian Ablon, and Tim Webb. 2015. The defender’s dilemma:
Charting a course toward cybersecurity. Rand Corporation.

Yu Liu, Xu Zhou, and Wei-Wei Gong. 2017. A Survey of Search Strategies in the
Dynamic Symbolic Execution. ITM Web of Conferences 12 (2017), 03025.
Kin-Keung Ma, Yit Phang Khoo, Jeffrey S. Foster, and Michael Hicks. 2011. Di-
rected Symbolic Execution. Static Analysis - 18th International Symposium,
SAS 2011, Venice, Italy, September 14-16, 2011. Proceedings 6887 (2011), 95-111.
https://doi.org/10.1007/978-3-642-23702-7_11

Robert O’Callahan, Chris Jones, Nathan Froyd, Kyle Huey, Albert Noll, and
Nimrod Partush. 2017. Engineering record and replay for deployability. 2017
USENIX Annual Technical Conference (USENIX ATC 17) (2017), 377-389.

Brian S Pak. 2012. Hybrid fuzz testing: Discovering software bugs via fuzzing
and symbolic execution. School of Computer Science Carnegie Mellon University
(2012).

Riyad Parvez, Paul A. S. Ward, and Vijay Ganesh. 2016. Combining static analysis
and targeted symbolic execution for scalable bug-finding in application binaries.
Proceedings of the Annual International Conference on Computer Science and Soft-
ware Engineering (CASCON) (2016). http://dl.acm.org/citation.cfm?id=3049889
Fabian Pedregosa, Gaél Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss,
Vincent Dubourg, et al. 2011. Scikit-learn: Machine learning in Python. Journal
of machine learning research 12, Oct (2011), 2825-2830.

David A. Ramos and Dawson R. Engler. 2015. Under-Constrained Symbolic Execu-
tion: Correctness Checking for Real Code. Proceedings of the USENIX Security Sym-
posium (2015). https://www.usenix.org/conference/usenixsecurity15/technical-
sessions/presentation/ramos

Prateek Saxena, Pongsin Poosankam, Stephen McCamant, and Dawn Song. 2009.
Loop-extended symbolic execution on binary programs. Proceedings of the eigh-
teenth international symposium on Software testing and analysis (2009), 225-236.
Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens, Mario Polino,
Andrew Dutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Kruegel,
et al. 2016. Sok:(state of) the art of war: Offensive techniques in binary analysis.
2016 IEEE Symposium on Security and Privacy (SP) (2016), 138-157.

Jia Song and Jim Alves-Foss. 2015. The DARPA cyber grand challenge: A com-
petitor’s perspective. IEEE Security & Privacy 13, 6 (2015), 72-76.

Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang,
Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna.
2016. Driller: Augmenting Fuzzing Through Selective Symbolic Execution. NDSS
16 (2016), 1-16.

David Trabish, Andrea Mattavelli, Noam Rinetzky, and Cristian Cadar. 2018.
Chopped symbolic execution. Proceedings of the International Conference on
Software Engineering, (ICSE) (2018). https://doi.org/10.1145/3180155.3180251
Zhongjie Wang, Shitong Zhu, Yue Cao, Zhiyun Qian, Cheng-Yu Song, S. V. Krish-
namurthy, Kevin S. Chan, and Tracy D. Braun. 2020. SymTCP: Eluding Stateful
Deep Packet Inspection with Automated Discrepancy Discovery. (2020).

Tao Xie, Nikolai Tillmann, Jonathan de Halleux, and Wolfram Schulte. 2009.
Fitness-guided path exploration in dynamic symbolic execution. 2009 IEEE/IFIP
International Conference on Dependable Systems & Networks (2009), 359-368.
Meng Xu, Chenxiong Qian, Kangjie Lu, Michael Backes, and Taesoo Kim. 2018.
Precise and Scalable Detection of Double-Fetch Bugs in OS Kernels. Proceedings
of the IEEE Symposium on Security and Privacy (S&P) (2018). https://doi.org/10.
1109/SP.2018.00017

Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and Taesoo Kim. 2018. QSYM: A
Practical Concolic Execution Engine Tailored for Hybrid Fuzzing. Proceedings of
the USENIX Security Symposium (2018).

Michal Zalewski. 2014. "American Fuzzy Lop". https://lcamtuf.coredump.cx/afl/
Yufeng Zhang, Zhenbang Chen, Ji Wang, Wei Dong, and Zhiming Liu. 2015.
Regular property guided dynamic symbolic execution. Proceedings of the IEEE
International Conference on Software Engineering (ICSE) (2015).

Lei Zhao, Yue Duan, Heng Yin, and Jifeng Xuan. 2019. Send Hardest Problems My
Way: Probabilistic Path Prioritization for Hybrid Fuzzing. 26th Annual Network
and Distributed System Security Symposium, NDSS 2019, San Diego, California,
USA, February 24-27, 2019 (2019).

https://blog.trailofbits.com/2016/08/01/your-tool-works-better-than-mine-prove-it/
https://blog.trailofbits.com/2016/08/01/your-tool-works-better-than-mine-prove-it/
https://doi.org/10.1145/3319535.3354249
https://doi.org/10.1145/3319535.3354249
https://doi.org/10.1007/978-3-642-23702-7_11
http://dl.acm.org/citation.cfm?id=3049889
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/ramos
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/ramos
https://doi.org/10.1145/3180155.3180251
https://doi.org/10.1109/SP.2018.00017
https://doi.org/10.1109/SP.2018.00017
https://lcamtuf.coredump.cx/afl/

	Abstract
	1 Introduction
	2 Pattern Learning
	2.1 Feature Selection
	2.2 Feature Preparation

	3 Model Preparation
	3.1 Dataset
	3.2 Feature Extraction
	3.3 Cleaning the Data
	3.4 Training

	4 Guided Symbolic Execution
	4.1 Performance Considerations
	4.2 Exploration Technique
	4.3 Prioritization Strategies

	5 Evaluation
	5.1 Experimental Setup
	5.2 Model Accuracy and Feature Evaluation
	5.3 Comparison with Existing Techniques
	5.4 Score Analysis
	5.5 Applications to real-world Software

	6 Discussion
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

